Fifty nanometers of Al2O3 and TiO2 nanolaminate thin films deposited by atomic layer deposition (ALD) were investigated for protection of copper in 0.1 M NaCl using electrochemical techniques. Coated samples showed increases in polarization resistance over uncoated copper, up to 12 MΩ-cm2, as measured by impedance spectroscopy. Over a 72-h immersion period, impedance of the titania-heavy films was found to be the most stable, as the alumina films experienced degradation after less than 24 h, regardless of the presence of dissolved oxygen. A film comprised of alternating Al2O3 and TiO2 layers of 5 nm each (referenced as ATx5), was determined to be the best corrosion barrier of the films tested based on impedance spectroscopy measurements over 72 h and equivalent circuit modeling. Dissolved oxygen had a minimal effect on ALD film stability, and increasing the deposition temperature from 150 °C to 250 °C, although useful for increasing film quality, was found to be counterproductive for long-term corrosion protection. Implications of ALD film aging and copper-based surface film formation during immersion and testing are also discussed briefly. The results presented here demonstrate the potential for ultra-thin corrosion barrier coatings, especially for high aspect ratios and component interiors, for which ALD is uniquely suited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.