X-ray crystallography shows the myosin cross-bridge to exist in two conformations, the beginning and end of the "power stroke." A long lever-arm undergoes a 60 degrees to 70 degrees rotation between the two states. This rotation is coupled with changes in the active site (OPEN to CLOSED) and phosphate release. Actin binding mediates the transition from CLOSED to OPEN. Kinetics shows that the binding of myosin to actin is a two-step process which affects ATP and ADP affinity. The structural basis of these effects is not explained by the presently known conformers of myosin. Therefore, other states of the myosin cross-bridge must exist. Moreover, cryoelectronmicroscopy has revealed other angles of the cross-bridge lever arm induced by ADP binding. These structural states are presently being characterized by site-directed mutagenesis coupled with kinetic analysis.
Successful host cell invasion is a prerequisite for survival of the obligate intracellular apicomplexan parasites and establishment of infection. Toxoplasma gondii penetrates host cells by an active process involving its own actomyosin system and which is distinct from induced phagocytosis. Toxoplasma gondii myosin A (TgMyoA) is presumed to achieve power gliding motion and host cell penetration by the capping of apically released adhesins towards the rear of the parasite. We report here an extensive biochemical characterization of the functional TgMyoA motor complex. TgMyoA is anchored at the plasma membrane and binds a novel type of myosin light chain (TgMLC1). Despite some unusual features, the kinetic and mechanical properties of TgMyoA are unexpectedly similar to those of fast skeletal muscle myosins. Microneedle±laser trap and sliding velocity assays established that TgMyoA moves in unitary steps of 5.3 nm with a velocity of 5.2 mm/s towards the plus end of actin ®laments. TgMyoA is the ®rst fast, singleheaded myosin and ful®ls all the requirements for power parasite gliding.
The effects of mutations in an actin-binding surface loop of myosin (loop 2) are described. Part of loop 2, the segment between myosin residues 618 and 622, was replaced with sequences enlarged by the introduction of positively charged GKK or neutral GNN motifs. Constructs with loops carrying up to 20 additional amino acids and charge variations from -1 to +12 were produced. Steady-state and transient kinetics were used to characterize the enzymatic behavior of the mutant motor domains. Binding of nucleotide was not affected by any of the alterations in loop 2. In regard to their interaction with actin, constructs with moderate charge changes (-1 to +2) displayed wild-type-like behavior. Introduction of more than one GKK motif led to stronger coupling between the actin- and nucleotide-binding sites of myosin and an up to 1000-fold increased affinity for actin in the absence of ATP and at zero ionic strength. In comparison to the wild-type construct M765, constructs with 4-12 extra charges displayed an increased dependence on ionic strength in their interaction with actin, a 2-3-fold increase in kcat, a more than 10-fold reduction in Kapp for actin, and a 34-70-fold increase in catalytic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.