We present our investigations into the optical scattering properties of both sugar maple (Acer saccarum) and eastern cottonwood (Populus deltoides) leaves in the near-IR wavelength regime. The bidirectional scattering distribution function (BSDF) describes the fractions of light reflected by and transmitted through a leaf for a given set of illumination and observation angles. Experiments were performed to measure the BSDF of each species at a discrete set of illumination and observation angles. We then modeled the BSDFs in such a way that other researchers may interpolate their values for scattering in any direction under illumination at any angle.
Detecting objects hidden beneath forest canopies is a difficult task for optical remote sensing systems. Rather than relying upon the existence of gaps between leaves, as other researchers have done, our ultimate goal is to use light scattered by leaves to image through dense foliage. Herein we describe the development of a Monte Carlo model for simulating the scattering of light as it propagates through the leaves of an extended tree canopy. We measured several parameters, including the gap fraction and maximum leaf-area density, of a nearby sugar maple tree grove and applied them to our model. We report the results of our simulation in both the ground and the receiver planes for an assumed illumination angle of 80 degrees. To validate our model, we then illuminated the sugar maple tree grove at 80 degrees and collected data both on the canopy floor and at our monostatic receiver aperture. Experimental results were found to correlate well with our simulated expectations.
Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them. This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public Affairs Office (PAO) and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.