In this paper, we consider power spectral density estimation of bandlimited, wide-sense stationary signals from sub-Nyquist sampled data. This problem has recently received attention from within the emerging field of cognitive radio for example, and solutions have been proposed that use ideas from compressed sensing and the theory of digital alias-free signal processing. Here we develop a compressed sensing based technique that employs multi-coset sampling and produces multi-resolution power spectral estimates at arbitrarily low average sampling rates. The technique applies to spectrally sparse and nonsparse signals alike, but we show that when the widesense stationary signal is spectrally sparse, compressed sensing is able to enhance the estimator. The estimator does not require signal reconstruction and can be directly obtained from a straightforward application of nonnegative least squares.
The Random Demodulator (RD) and the Modulated Wideband Converter (MWC) are two recently proposed compressed sensing (CS) techniques for the acquisition of continuous-time spectrallysparse signals. They extend the standard CS paradigm from sampling discrete, finite dimensional signals to sampling continuous and possibly infinite dimensional ones, and thus establish the ability to capture these signals at sub-Nyquist sampling rates. The RD and the MWC have remarkably similar structures (similar block diagrams), but their reconstruction algorithms and signal models strongly differ. To date, few results exist that compare these systems, and owing to the potential impacts they could have on spectral estimation in applications like electromagnetic scanning and cognitive radio, we more fully investigate their relationship in this paper. We show that the RD and the MWC are both based on the general concept of random filtering, but employ significantly different sampling functions. We also investigate system sensitivities (or robustness) to sparse signal model assumptions. Lastly, we show that "block convolution" is a fundamental aspect of the MWC, allowing it to successfully sample and reconstruct block-sparse (multiband) signals. Based on this concept, we propose a new acquisition system for continuous-time signals whose amplitudes are block sparse. The paper includes detailed time and frequency domain analyses of the RD and the MWC that differ, sometimes substantially, from published results.
The problem of efficient sampling of wideband Radar signals for Electronic Support Measures (ESM) is investigated in this paper. Wideband radio frequency sampling generally needs a sampling rate at least twice the maximum frequency of the signal, i.e. Nyquist rate, which is generally very high. However, when the signal is highly structured, like wideband Radar signals, we can use the fact that signals do not occupy the whole spectrum and instead, there exists a parsimonious structure in the time-frequency domain. Here, we use this fact and introduce a novel low complexity sampling system, which has a recovery guarantee, assuming that received RF signals follow a particular structure. The proposed technique is inspired by the compressive sampling of sparse signals and it uses a multi-coset sampling setting, however it does not involve a computationally expensive reconstruction step. We call this here Low-Complexity Multi-Coset (LoCoMC) sampling technique. Simulation results, show that the proposed sub-Nyquist sampling technique works well in simulated ES scenarios.
We propose a quantization design technique (estimator) suitable for new compressed sensing sampling systems whose ultimate goal is classification or detection. The design is based on empirical divergence maximization, an approach akin to the well-known technique of empirical risk minimization. We show that the estimator's rate of convergence to the "best in class" estimate can be as fast as n −1 , where n equals the number of training samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.