Caenorhabditis elegans oocytes, like those of most animals, arrest during meiotic prophase. Sperm promote the resumption of meiosis (maturation) and contraction of smooth muscle-like gonadal sheath cells, which are required for ovulation. We show that the major sperm cytoskeletal protein (MSP) is a bipartite signal for oocyte maturation and sheath contraction. MSP also functions in sperm locomotion, playing a role analogous to actin. Thus, during evolution, MSP has acquired extracellular signaling and intracellular cytoskeletal functions for reproduction. Proteins with MSP-like domains are found in plants, fungi, and other animals, suggesting that related signaling functions may exist in other phyla.
VAP proteins (human VAPB/ALS8, Drosophila VAP33, and C. elegans VPR-1) are homologous proteins with an amino-terminal major sperm protein (MSP) domain and a transmembrane domain. The MSP domain is named for its similarity to the C. elegans MSP protein, a sperm-derived hormone that binds to the Eph receptor and induces oocyte maturation. A point mutation (P56S) in the MSP domain of human VAPB is associated with Amyotrophic lateral sclerosis (ALS), but the mechanisms underlying the pathogenesis are poorly understood. Here we show that the MSP domains of VAP proteins are cleaved and secreted ligands for Eph receptors. The P58S mutation in VAP33 leads to a failure to secrete the MSP domain as well as ubiquitination, accumulation of inclusions in the endoplasmic reticulum, and an unfolded protein response. We propose that VAP MSP domains are secreted and act as diffusible hormones for Eph receptors. This work provides insight into mechanisms that may impact the pathogenesis of ALS.
Summary A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.
During sexual reproduction in most animals, oocytes arrest in meiotic prophase and resume meiosis (meiotic maturation) in response to sperm or somatic cell signals. Despite progress in delineating mitogen-activated protein kinase (MAPK) and CDK/cyclin activation pathways involved in meiotic maturation, it is less clear how these pathways are regulated at the cell surface. The Caenorhabditis elegans major sperm protein (MSP) signals oocytes, which are arrested in meiotic prophase, to resume meiosis and ovulate. We used DNA microarray data and an in situ binding assay to identify the VAB-1 Eph receptor protein-tyrosine kinase as an MSP receptor. We show that VAB-1 and a somatic gonadal sheath cell-dependent pathway, defined by the CEH-18 POU-class homeoprotein, negatively regulate meiotic maturation and MAPK activation. MSP antagonizes these inhibitory signaling circuits, in part by binding VAB-1 on oocytes and sheath cells. Our results define a sperm-sensing control mechanism that inhibits oocyte maturation, MAPK activation, and ovulation when sperm are unavailable for fertilization. MSP-domain proteins are found in diverse animal taxa, where they may regulate contact-dependent Eph receptor signaling pathways. Sexual reproduction requires meiosis to generate haploid (1n) gamete nuclei, which unite after fertilization to form the diploid (2n) totipotent embryo. Despite this universal requirement, meiosis is regulated differently in sperm and oocytes. Whereas sperm proceed through the meiotic divisions uninterrupted, oocytes almost invariably arrest during one, and sometimes two stages following premeiotic DNA replication and meiotic recombination, depending on the species. Therefore, the completion of meiosis in oocytes must be coordinated with development and fertilization to ensure successful reproduction. To achieve this coordination, sperm and somatic cell signals regulate oocyte meiotic progression by activating downstream cyclin-dependent kinase regulatory pathways, which mediate cell cycle transitions in eukaryotes (for review, see Ferrell 1999; Masui 2001).The oocytes of most animals, including the early-diverging sponges and cnidarians (Masui 1985), arrest during meiotic prophase, suggesting that this regulatory mechanism represents a fundamental metazoan reproductive strategy. Human oocytes can remain arrested in prophase for several decades, and aberrant regulation of the first meiotic division is a major cause of infertility, miscarriage, and chromosomal nondisjunction (for review, see Jacobs 1992; Hunt and LeMaire-Adkins 1998). In most animals examined, meiosis resumes in response to nonautonomous signals through a process termed meiotic maturation, which prepares the oocyte for fertilization and embryogenesis. The hallmarks of meiotic maturation include nuclear envelope breakdown, cortical cytoskeletal rearrangement, and meiotic spindle assembly. Studies of Xenopus have identified two key intracellular enzymes, maturation-promoting factor (MPF), a complex consisting of the regulatory protein cyclin B...
Calcimimetic compounds, which activate the parathyroid cell Ca 2ϩ receptor (CaR) and inhibit parathyroid hormone (PTH) secretion, are under experimental study as a treatment for hyperparathyroidism. This report describes the salient pharmacodynamic properties, using several test systems, of a new calcimimetic compound, cinacalcet HCl. Cinacalcet HCl increased the concentration of cytoplasmic Ca 2ϩ ([Ca 2ϩ ] i ) in human embryonic kidney 293 cells expressing the human parathyroid CaR. Cinacalcet HCl (EC 50 ϭ 51 nM) in the presence of 0.5 mM extracellular Ca 2ϩ elicited increases in [Ca 2ϩ ] i in a dose-and calcium-dependent manner. Similarly, in the presence of 0.5 mM extracellular Ca 2ϩ , cinacalcet HCl (IC 50 ϭ 28 nM) produced a concentration-dependent decrease in PTH secretion from cultured bovine parathyroid cells. Using rat medullary thyroid carcinoma 6-23 cells expressing the CaR, cinacalcet HCl (EC 50 ϭ 34 nM) produced a concentrationdependent increase in calcitonin secretion. In vivo studies in rats demonstrated cinacalcet HCl is orally bioavailable and displays approximately linear pharmacokinetics over the dose range of 1 to 36 mg/kg. Furthermore, this compound suppressed serum PTH and blood-ionized Ca 2ϩ levels and increased serum calcitonin levels in a dose-dependent manner. Cinacalcet was about 30-fold more potent at lowering serum levels of PTH than it was at increasing serum calcitonin levels. The S-enantiomer of cinacalcet (S-AMG 073) was at least 75-fold less active in these assay systems. The present findings provide compelling evidence that cinacalcet HCl is a potent and stereoselective activator of the parathyroid CaR and, as such, might be beneficial in the treatment of hyperparathyroidism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.