Background To date, more than 161,000 people have died from the coronavirus disease 2019 (COVID-19) yet the fundamental drivers of the morbidity and mortality remain uncertain. Clinicians worldwide appear to be at a loss to know how to prevent and treat the severe respiratory distress in these patients effectively. Consequently, the fundamental mechanisms leading to death in high-risk patients with COVID-19 need to be discovered and addressed with urgency. Despite a marked drop in frequency, the post-mortem autopsy remains an essential part of both discovering the cause of death in a particular individual, but also in advancing the science and treatment of disease, especially in the case of novel pathogens such as SARS-CoV-2[2]. The goal of an autopsy is to discover the cause of death (COD) using a macro/microscopic investigation. Traditionally, the intact organs are carefully removed, inspected, and weighed. Because lung weight is often affected by the cause of death and the last breath occurs very near if not at the moments of death, the evaluation of the lungs is one of the starting points of any COD investigation[3]. Method A comprehensive search was performed to systematically review all reported autopsy findings in COVID-19 patients in order to better understand the underlying disease mechanisms resulting in death. We then compared these findings with the results of a targeted literature review of hyaluronan in relationship to acute respiratory distress syndrome (ARDS). Results In total, data from 181 autopsies were identified. From this group, 6 autopsies of COVID-19 patients were selected for a detailed review and statistical analysis. The average lung weight of those who were determined to have died as a result of SARS-CoV-2 was 2196g-approximately 2.5x normal lung weight. Hyaline membranes were consistently identified on histologic sections. A review of the literature reveals that hyaluronan has been associated with the pathophysiology of ARDS since 1967. However, its key role in driving the morbidity and mortality of the condition has heretofore not been fully recognized. Conclusions We propose that the induced hyaluronan storm syndrome or IHS, is the model that best addresses the heretofore perplexing respiratory failure that is the proximal cause of death in a minority, but ever rising number, of patients. In addition to treating and preventing IHS in currently infected individuals now; an aggressive research effort should be undertaken to discover why the majority of individuals who are exposed to the virus are either minimally or asymptomatic, while a minority of high-risk individuals rapidly progress to respiratory failure and death. Keywords Systematic review; COVID-19; SARS-CoV-2; Hyaline Membrane; Hyaluronan; Acute Respiratory Distress Syndrome; ARDS; Autopsy; IHS; Induced Hyaluronan Storm Syndrome; COD; Cause of Death
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in mice. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with those with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is, therefore, the intention of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and provide some historical context for recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon in the hope of raising awareness and encouraging continued VK-related investigations in this important and highly specialized sensory system.
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in the mouse. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is the intention therefore of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and to provide some historical context to recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon, in the hope of raising awareness, and encouraging continued VK related investigations in this important and highly specialized sensory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.