Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system. T he vast majority of neurons in the mammalian brain are produced during embryonic development. However, remnants of the germinal zones of the developing brain continue to proliferate into adulthood, generating large numbers of neurons in the adult brain (1-3). The subventricular zone (SVZ) of the lateral ventricles (LVs), its anterior extension, the rostral migratory stream (RMS), and the subgranular cell layer (S-GCL) of the dentate gyrus (DG) of the hippocampus are the major sites of adult neurogenesis, although other regions of the adult brain retain the potential to generate new neurons (4-6). Many of the newly generated neurons undergo physiological cell death (7), but it is becoming clear that some of these new neurons become integrated into existing neuronal circuits, thus potentially contributing to a previously unanticipated form of neuroplasticity (8). Several protein growth factors have been shown to affect adult neurogenesis in vivo (5, 6, 9-11). However, the signaling systems involved in regulating cell division in the adult brain are only beginning to be understood.Increasingly diverse functions of NO, a transcellular signaling molecule (12), are continuing to be demonstrated, and there is growing evidence that NO may be involved in controlling proliferation of neuronal cells. Neuronal NO synthase (nNOS), the major NOS isoform in the mammalian brain, is transiently expressed in the developing brain in a pattern suggesting its involvement in neural development (13). Furthermore, NO has been shown to effectively and reversibly suppress cell division (14, 15); this property of NO, coupled to its ability to regulate gene expression, is exploited in a number of developmental contexts (16). Materials and MethodsA full description of the methods used in this work can be found in Supporting Materials and Methods, which is published as supporting information on the PNAS web site, www.pnas.org.All a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.