Francisella tularensis is an intracellular gram-negative bacterium that is the causative agent of tularemia and a potential bioweapon. We have characterized the efficacy of a defined F. novicida mutant (⌬iglC) as a live attenuated vaccine against subsequent intranasal challenge with the wild-type organism. Animals primed with the F. novicida ⌬iglC (KKF24) mutant induced robust splenic gamma interferon (IFN-␥) and interleukin-12 (IL-12) recall responses with negligible IL-4 production as well as the production of antigen-specific serum immunoglobulin G1 (IgG1) and IgG2a antibodies. BALB/c mice vaccinated intranasally (i.n.) with KKF24 and subsequently challenged with wild-type F. novicida (100 and 1,000 50% lethal doses) were highly protected (83% and 50% survival, respectively) from the lethal challenges. The protection conferred by KKF24 vaccination was shown to be highly dependent on endogenous IFN-␥ production and also was mediated by antibodies that could be adoptively transferred to naive B-cell-deficient mice by inoculation of immune sera. Collectively, the results demonstrate that i.n. vaccination with KKF24 induces a vigorous Th1-type cytokine and antibody response that is protective against subsequent i.n. challenge with the wild-type strain. This is the first report of a defined live attenuated strain providing protection against the inhalation of F. novicida.
Francisella tularensis is a highly virulent facultative intracellular bacterium and is considered a potential biological warfare agent. Inhalation tularemia can lead to the development of bronchopneumonia, which is frequently fatal without medical intervention. Treatment strategies that directly target the respiratory mucosa may extend the efficacy of therapy, particularly for the medical management of acute aerosol exposure. To this end, we describe an intranasal (i.n.) strategy for the treatment of pulmonary Francisella infection in mice that uses a combinatorial approach with the conventional antibiotic gentamicin and interleukin 12 (IL-12). The i.n. administration of IL-12 alone promoted bacterial clearance and extended the time to death but did not prevent mortality against lethal pulmonary challenge with Francisella tularensis subsp. novicida. However, i.n. treatment with gentamicin and IL-12 therapeutically at 8 and 24 h after challenge markedly enhanced the rate of survival (70 to 100%) against pulmonary infection compared to the rates of survival for animals treated with antibiotic alone (17%) or IL-12 alone (0%). A delay in combinatorial therapy over a span of 4 days progressively decreased the efficacy of this treatment regimen. This combinatorial treatment was shown to be highly dependent upon the induction of endogenous gamma interferon and may also involve the activation of natural killer cells. Together, these findings suggest that IL-12 may be a potent adjunct for chemotherapy to enhance drug effectiveness against pulmonary Francisella infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.