Solution‐processed organic–inorganic lead halide perovskite solar cells (PSCs) are considered as one of the most promising photovoltaic technologies thanks to both high performance and low manufacturing cost. However, a key challenge of this technology is the lack of ambient stability over prolonged solar irradiation under continuous operating conditions. In fact, only a few studies (carried out in inert atmosphere) already approach the industrial standards. Here, it is shown how the introduction of MoS2 flakes as a hole transport interlayer in inverted planar PSCs results in a power conversion efficiency (PCE) of ≈17%, overcoming the one of the standard reference devices. Furthermore, this approach allows the realization of ultrastable PSCs, stressed in ambient conditions and working at continuous maximum power point. In particular, the photovoltaic performances of the proposed PSCs represent the current state‐of‐the‐art in terms of lifetime, retaining 80% of their initial performance after 568 h of continuous stress test, thus approaching the industrial stability standards. Moreover, it is further demonstrated the feasibility of this approach by fabricating large‐area PSCs (0.5 cm2 active area) with MoS2 as the interlayer. These large‐area PSCs show improved performance (i.e., PCE = 13.17%) when compared with the standard devices (PCE = 10.64%).
Improving the performance of organic optoelectronics has been under vigorous research for decades. Recently, polaritonics has been introduced as a technology that has the potential to improve the optical, electrical, and chemical properties of materials and devices. However, polaritons have been mainly studied in optical microcavities that are made by vacuum deposition processes, which are costly, unavailable to many, and incompatible with printed optoelectronics methods. Efforts toward the fabrication of polariton microcavities with solution-processed techniques have been utterly absent. Herein, we demonstrate for the first time strong light–matter coupling and polariton photoluminescence in an organic microcavity consisting of an aluminum mirror and a distributed Bragg reflector (DBR) made by sequential dip coating of titanium hydroxide/poly(vinyl alcohol) (TiOH/PVA) and Nafion films. To fabricate and develop the solution-processed DBRs and microcavities, we automatized a dip-coating device that allowed us to produce sub-100 nm films consistently over many dip-coating cycles. Owning to the solution-based nature of our DBRs, our results pave the way to the realization of polariton optoelectronic devices beyond physical deposition methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.