Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
BackgroundThe field of metagenomics (study of genetic material recovered directly from an environment) has grown rapidly, with many bioinformatics analysis methods being developed. To ensure appropriate use of such methods, robust comparative evaluation of their accuracy and features is needed. For taxonomic classification of sequence reads, such evaluation should include use of clade exclusion, which better evaluates a method’s accuracy when identical sequences are not present in any reference database, as is common in metagenomic analysis. To date, relatively small evaluations have been performed, with evaluation approaches like clade exclusion limited to assessment of new methods by the authors of the given method. What is needed is a rigorous, independent comparison between multiple major methods, using the same in silico and in vitro test datasets, with and without approaches like clade exclusion, to better characterize accuracy under different conditions.ResultsAn overview of the features of 38 bioinformatics methods is provided, evaluating accuracy with a focus on 11 programs that have reference databases that can be modified and therefore most robustly evaluated with clade exclusion. Taxonomic classification of sequence reads was evaluated using both in silico and in vitro mock bacterial communities. Clade exclusion was used at taxonomic levels from species to class—identifying how well methods perform in progressively more difficult scenarios. A wide range of variability was found in the sensitivity, precision, overall accuracy, and computational demand for the programs evaluated. In experiments where distilled water was spiked with only 11 bacterial species, frequently dozens to hundreds of species were falsely predicted by the most popular programs. The different features of each method (forces predictions or not, etc.) are summarized, and additional analysis considerations discussed.ConclusionsThe accuracy of shotgun metagenomics classification methods varies widely. No one program clearly outperformed others in all evaluation scenarios; rather, the results illustrate the strengths of different methods for different purposes. Researchers must appreciate method differences, choosing the program best suited for their particular analysis to avoid very misleading results. Use of standardized datasets for method comparisons is encouraged, as is use of mock microbial community controls suitable for a particular metagenomic analysis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-015-0788-5) contains supplementary material, which is available to authorized users.
BackgroundStudies of environmental microbiota typically target only specific groups of microorganisms, with most focusing on bacteria through taxonomic classification of 16S rRNA gene sequences. For a more holistic understanding of a microbiome, a strategy to characterize the viral, bacterial, and eukaryotic components is necessary.ResultsWe developed a method for metagenomic and amplicon-based analysis of freshwater samples involving the concentration and size-based separation of eukaryotic, bacterial, and viral fractions. Next-generation sequencing and culture-independent approaches were used to describe and quantify microbial communities in watersheds with different land use in British Columbia. Deep amplicon sequencing was used to investigate the distribution of certain viruses (g23 and RdRp), bacteria (16S rRNA and cpn60), and eukaryotes (18S rRNA and ITS). Metagenomic sequencing was used to further characterize the gene content of the bacterial and viral fractions at both taxonomic and functional levels.ConclusionThis study provides a systematic approach to separate and characterize eukaryotic-, bacterial-, and viral-sized particles. Methodologies described in this research have been applied in temporal and spatial studies to study the impact of land use on watershed microbiomes in British Columbia.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-016-0166-1) contains supplementary material, which is available to authorized users.
Select bacteria, such as Escherichia coli or coliforms, have been widely used as sentinels of low water quality; however, there are concerns regarding their predictive accuracy for the protection of human and environmental health. To develop improved monitoring systems, a greater understanding of bacterial community structure, function, and variability across time is required in the context of different pollution types, such as agricultural and urban contamination. Here, we present a year-long survey of free-living bacterial DNA collected from seven sites along rivers in three watersheds with varying land use in Southwestern Canada. This is the first study to examine the bacterial metagenome in flowing freshwater (lotic) environments over such a time span, providing an opportunity to describe bacterial community variability as a function of land use and environmental conditions. Characteristics of the metagenomic data, such as sequence composition and average genome size (AGS), vary with sampling site, environmental conditions, and water chemistry. For example, AGS was correlated with hours of daylight in the agricultural watershed and, across the agriculturally and urban-affected sites, k-mer composition clustering corresponded to nutrient concentrations. In addition to indicating a community shift, this change in AGS has implications in terms of the normalization strategies required, and considerations surrounding such strategies in general are discussed. When comparing abundances of gene functional groups between high- and low-quality water samples collected from an agricultural area, the latter had a higher abundance of nutrient metabolism and bacteriophage groups, possibly reflecting an increase in agricultural runoff. This work presents a valuable dataset representing a year of monthly sampling across watersheds and an analysis targeted at establishing a foundational understanding of how bacterial lotic communities vary across time and land use. The results provide important context for future studies, including further analyses of watershed ecosystem health, and the identification and development of biomarkers for improved water quality monitoring systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.