To help students who traditionally underperform in general chemistry, we created a supplementary instruction (SI) course and called it the STEM-Dawgs Workshops. These workshops are an extension of the Peer-led Team Learning (PLTL) SI. In addition to peer-facilitated problem-solving, we incorporated two components inspired by learning sciences: (1) training in research-based study skills, and (2) evidence-based interventions targeting psychological and emotional support. Here we use an explanatory mixed methods approach to measure the impact of the STEM-Dawgs Workshops, with a focus on four sub-populations that are historically underrepresented in Chemistry: underrepresented minorities, females, low-income students, and first-generation students. Specifically, we compared three groups of students in the same General Chemistry course: students in general chemistry and not the workshops (“Gen Chem students”), students in the workshops (“STEM-Dawgs”), and students who volunteered for the workshops but did not get in (“Volunteers”). We tested hypotheses with regression models and conducted a series of focus group interviews with STEM-Dawgs. Compared to the Gen Chem population, the STEM-Dawg and Volunteer populations were enriched with students in all four under-represented sub-populations. Compared to Volunteers, STEM-Dawgs had increased exam scores, sense of belonging, perception of relevance, self-efficacy, and emotional satisfaction about chemistry. URM STEM-Dawgs had lower failure rates, and exam score achievement gaps that impacted first-generation and female Gen Chem students were eliminated in the STEM-Dawg population. Finally, female STEM-Dawgs had an increased sense of belonging and higher emotional satisfaction about chemistry than women Volunteers. Focus groups suggested that successes came in part from the supportive peer-learning environment and the relationships with peer facilitators. Together, our results indicate that this supplementary instruction model can raise achievement and improve affect for students who are underrepresented in chemistry.
Gender gaps in exam scores or final grades are common in introductory college science and engineering classrooms, with women underperforming relative to men with the same admission test scores or college grade point averages. After failing to close a historically documented gender gap in a large introductory biology course using interventions targeted at training a growth mindset, we implemented interventions designed to reduce student test anxiety. We combined evidence-based exercises based on expressive writing and on reappraising physiological arousal. We also used a valid measure to quantify test anxiety at the start and end of the course. This instrument measures an individual’s self-declared or perceived test anxiety—also called trait anxiety—but not the immediate or “state” anxiety experienced during an actual exam. Consistent with previous reports in the literature, we found that women in this population declared much higher test anxiety than men and that students who declared higher test anxiety had lower exam scores than students who declared lower test anxiety. Although the test anxiety interventions had no impact on the level of self-declared trait anxiety, they did significantly increase student exam performance. The treatment benefits occurred in both men and women. These data suggest that 1) a combination of interventions based on expressive writing and reappraising physiological arousal can be a relatively easy manner to boost exam performance in a large-enrollment science, technology, engineering, and mathematics (STEM) course and encourage emotion regulation; 2) women are more willing than men to declare that they are anxious about exams, but men and women may actually experience the same level of anxiety during the exam itself; and 3) women are underperforming in STEM courses for reasons other than gender-based differences in mindset or test anxiety.
BackgroundUnderstanding student anxiety is an important factor for broadening the gender diversity of STEM majors due to its disproportionate and negative influence on women. To investigate how student anxiety is related to other academic emotions I conducted open-ended interviews with 19 university students and analyzed the data using emergent grounded theory. Emergent grounded theory uses inductive and deductive reasoning to develop a model of cognition and human behavior.ResultsData analysis led to the development of a detailed theoretical model outlining connections among student anxiety, positive and negative academic emotions, self-regulated learning, and performance. In addition, the data highlight important emotional differences between men and women that have the potential to influence retention in STEM. Specifically, the model elaborates on the concept of a self-deprecating cycle driven by negative academic emotions and suggests that women may be more likely to become trapped in this cycle.ConclusionThe model incorporates students’ emotions as a powerful influence on performance and can be used to inform strategies aimed at changing how university students experience and deal with emotions such as student anxiety.
Background: STEM educational reform encourages a transition from instructor-centered passive learning environments to student-centered, active learning environments. Instructors adopting these changes incorporate research-validated teaching practices that improve student learning. Professional development that trains faculty to implement instructional reforms plays a key role in supporting this transition. The most effective professional development experiences are those that not only help an instructor redesign a course, but that also result in a permanent realignment of the teaching beliefs of participating instructors. Effective professional development features authentic, rigorous experiences of sufficient duration. We investigated changes in the teaching beliefs of college faculty resulting from their participation in the Interdisciplinary Teaching about the Earth for a Sustainable Future (InTeGrate) project that guided them in the development of reformed instructional materials for introductory college science courses. A convergent parallel mixed methods design was employed using the Teacher Belief Interview, the Beliefs About Reformed Science Teaching and Learning survey, and participants' reflections on their experience to characterize pedagogical beliefs at different stages of their professional development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.