Reprogrammed glucose metabolism as a result of increased glycolysis and glucose uptake is a hallmark of cancer. Here we show that cancer cells can suppress glucose uptake by non-tumour cells in the pre-metastatic niche, by secreting vesicles that carry high levels of the miR-122 microRNA. High miR-122 levels in the circulation have been associated with metastasis in breast cancer patients and we show that cancer-cell-secreted miR-122 facilitates metastasis by increasing nutrient availability in the pre-metastatic niche. Mechanistically cancer-cell-derived miR-122 suppresses glucose uptake by niche cells in vitro and in vivo by downregulating the glycolytic enzyme pyruvate kinase (PKM). In vivo inhibition of miR-122 restores glucose uptake in distant organs, including brain and lungs, and decreases the incidence of metastasis. These results demonstrate that by modifying glucose utilization by recipient pre-metastatic niche cells, cancer-derived extracellular miR-122 is able to reprogram systemic energy metabolism to facilitate disease progression.
Nutrition exerts profound effects on health and dietary interventions are commonly used to treat diseases of metabolic etiology. Although cancer has a substantial metabolic component 1 , the principles that define whether nutrition may be used to influence tumour outcome are unclear 2. Nevertheless, it is established that targeting metabolic pathways with pharmacological agents or radiation can sometimes lead to controlled therapeutic outcomes. In contrast, whether specific dietary interventions could influence the metabolic pathways that are targeted in standard cancer therapies is not known. We now show that dietary restriction of methionine (MR), an essential amino acid, and the reduction of which has anti-aging and anti-obesogenic properties, influences cancer outcome through controlled and reproducible changes to one-carbon metabolism. This pathway metabolizes methionine and further is the target of a host of cancer interventions Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
The substrates used to modify nucleic acids and chromatin are affected by nutrient availability and the activity of metabolic pathways. Thus, cellular metabolism constitutes a fundamental component of chromatin status and thereby of genome regulation. Here we describe the biochemical and genetic principles of how metabolism can influence chromatin biology and epigenetics, discuss the functional roles of this interplay in developmental and cancer biology, and present future directions in this rapidly emerging area.
Poorly organized tumour vasculature often results in areas of limited nutrient supply and hypoxia. Despite our understanding of solid tumour responses to hypoxia, how nutrient deprivation regionally affects tumour growth and therapeutic response is poorly understood. Here, we show the core region of solid tumours displayed glutamine deficiency compared to other amino acids. Low glutamine in tumour core regions led to dramatic histone hyper-methylation due to decreased α-ketoglutarate levels, a key cofactor for the Jumonji-domain containing (JmjC) histone demethylases (JHDMs). Using patient-derived V600EBRAF melanoma cells, we found that low glutamine-induced histone hyper-methylation resulted in cancer cell de-differentiation and resistance to BRAF inhibitor treatment, which was largely mediated by methylation on H3K27, as knockdown of the H3K27-specific demethylase KDM6B and methyltransferase EZH2 respectively reproduced and attenuated the low glutamine effects in vitro and in vivo. Thus, intra-tumoural regional variation in the nutritional microenvironment contributes to tumour heterogeneity and therapeutic response.
Neurons from varied regions of the central nervous system can show widely divergent responses to electrical stimuli that are determined by cell-specific differences in ion channel composition. The well-ordered and highly characterized peripheral auditory system allows one to explore the significance of this diversity during the final stages of postnatal development. We examined the electrophysiological features of murine spiral ganglion neurons in vitro at a time when recordings could be made from the cell bodies before myelination. These cells carry information about sound stimuli from hair cell receptors in the basilar membrane and are arranged tonotopically. Spiral ganglion neuron responses to depolarizing current injection were assessed with whole-cell current clamp recordings from cells that were isolated separately from the apical and basal thirds of the mouse cochlea. These cells displayed systematic variation in their firing. Apex neurons (low frequency coding) showed longer latency, slowly adapting responses, whereas base neurons (high frequency coding) showed short latency, rapidly adapting responses to the same stimuli. This physiological diversity was mirrored by regional differences in ion channel content assessed immunohistochemically. Apex neurons had a preponderance of Kv4.2 subunits, whereas base neurons possessed greater levels of K(Ca), Kv1.1, and Kv3.1 subunits. Taken together, these results indicate that the distribution of a set of voltage-gated potassium channels may relate specifically to a particular range of coding frequencies. These studies also suggest that intrinsic properties of spiral ganglion neurons can contribute to the characteristic responses of the peripheral auditory system. Their potential role in development and adult function is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.