Abstract. Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.
The advent of high through-put screening in the drug discovery process has resulted in compounds with high lipophilicity and poor solubility. Increasing the solubility of such compounds poses a major challenge to formulation scientists. Various approaches have been adopted to address this including preparation of solid dispersions and solid solutions. Hot-melt extrusion is an efficient technology for producing solid molecular dispersions with considerable advantages over solvent-based processes such as spray drying and co-precipitation. Hot-melt extrusion has been demonstrated to provide sustained, modified, and targeted drug delivery. Improvements in bioavailability utilizing the hot-melt extrusion technique demonstrate the value of the technology as a potential drug delivery processing tool. The interest in hot-melt extrusion technology for pharmaceutical applications is evident from the increasing number of patents and publications in the scientific literature. Part II of this article reviews the myriad of hot-melt extrusion applications for pharmaceutical dosage forms including granules, pellets, tablets, implants, transmucosal, and transdermal systems.
The objective of the present research was to evaluate the physicochemical characteristics of berberine chloride and to assess the complexation of drug with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a first step towards solution dosage form development. The parameters such as log P value were determined experimentally and compared with predicted values. The pH-dependent aqueous solubility and stability were investigated following standard protocols at 25°C and 37°C. Drug solubility enhancement was attempted utilizing both surfactants and cyclodextrins (CDs), and the drug/CD complexation was studied employing various techniques such as differential scanning calorimetry, Fourier transform infrared, nuclear magnetic resonance, and scanning electron microscopy. The experimental log P value suggested that the compound is fairly hydrophilic. Berberine chloride was found to be very stable up to 6 months at all pH and temperature conditions tested. Aqueous solubility of the drug was temperature dependent and exhibited highest solubility of 4.05 ± 0.09 mM in phosphate buffer (pH 7.0) at 25°C, demonstrating the effect of buffer salts on drug solubility. Decreased drug solubility was observed with increasing concentrations of ionic surfactants such as sodium lauryl sulfate and cetyl trimethyl ammonium bromide. Phase solubility studies demonstrated the formation of berberine chloride-HPβCD inclusion complex with 1:1 stoichiometry, and the aqueous solubility of the drug improved almost 4.5-fold in the presence of 20% HPβCD. The complexation efficiency values indicated that the drug has at least threefold greater affinity for hydroxypropyl-β-CD compared to randomly methylated-β-CD. The characterization techniques confirmed inclusion complex formation between berberine chloride and HPβCD and demonstrated the feasibility of developing an oral solution dosage form of the drug.
Hydroxypropylcellulose (HPC) films containing drugs or hydrophilic or hydrophobic plasticizers were prepared by a hot melt extrusion process. Polyethylene glycol 8000 (PEG 8000) 2%, triethyl citrate (TEC) 2%, acetyltributyl citrate (ATBC) 2%, and polyethylene glycol 400 (PEG 400) 1% were the plasticizing agents studied. In addition, either hydrocortisone (HC) 1% or chlorpheniramine maleate (CPM) 1% was incorporated into the films as a model drug. The physical-mechanical properties of the films that were investigated included tensile strength (TS), percentage elongation (%E), and Young's modulus (YM). Differential scanning calorimetry (DSC) was utilized to determine glass transition temperatures (Tg's). These parameters were studied as a function of time and temperature. The glass transition temperatures initially decreased with the inclusion of the drugs and plasticizers. However, after 6 months aging, films containing PEG 400 and HC showed a marked increase in Tg. The films containing PEG 400 showed physical-mechanical instability in all parameters studied. All extruded films exhibited a marked decrease in TS in contrast to a large increase in %E when testing was performed perpendicular to flow versus in the direction of flow. In addition, a consistent film of HPC in the absence of drugs or plasticizers could not be extruded due to the excessive stress on the equipment. Although the theoretical percentage of CPM on aging remained fairly constant over the processing temperature ranges in this study, the HC levels remaining in the extruded films during storage were a function of time and temperature.
In today’s pharmaceutical arena, it is estimated that more than 40% of new chemical entities produced during drug discovery efforts exhibit poor solubility characteristics. However, over the last decade hot-melt extrusion (HME) has emerged as a powerful processing technology for drug delivery and has opened the door to a host of such molecules previously considered unviable as drugs. HME is considered to be an efficient technique in developing solid molecular dispersions and has been demonstrated to provide sustained, modified and targeted drug delivery resulting in improved bioavailability. This article reviews the myriad of HME applications for pharmaceutical dosage forms such as tablets, capsules, films and implants for drug delivery through oral, transdermal, transmucosal, transungual, as well as other routes of administration. Interest in HME as a pharmaceutical process continues to grow and the potential of automation and reduction of capital investment and labor costs have made this technique worthy of consideration as a drug delivery solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.