Background.Recently, epidemiological and clinical data have revealed important changes with regard to clinical adenovirus infection, including alterations in antigenic presentation, geographical distribution, and virulence of the virus.Methods. In an effort to better understand the epidemiology of clinical adenovirus infection in the United States, we adopted a new molecular adenovirus typing technique to study clinical adenovirus isolates collected from 22 medical facilities over a 25-month period during [2004][2005][2006]. A hexon gene sequence typing method was used to characterize 2237 clinical adenovirus-positive specimens, comparing their sequences with those of the 51 currently recognized prototype human adenovirus strains. In a blinded comparison, this method performed well and was much faster than the classic serologic typing method.Results. Among civilians, the most prevalent adenovirus types were types 3 (prevalence, 34.6%), 2 (24.3%), 1 (17.7%), and 5 (5.3%). Among military trainees, the most prevalent types were types 4 (prevalence, 92.8%), 3 (2.6%), and 21 (2.4%).Conclusions. For both populations, we observed a statistically significant increasing trend of adenovirus type 21 detection over time. Among adenovirus isolates recovered from specimens from civilians, 50% were associated with hospitalization, 19.6% with a chronic disease condition, 11% with a bone marrow or solid organ transplantation, 7.4% with intensive care unit stay, and 4.2% with a cancer diagnosis. Multivariable risk factor modeling for adenovirus disease severity found that age !7 years (odds ratio [OR], 3.2; 95% confidence interval [CI], 1.4-7.4), chronic disease (OR, 3.6; 95% CI, 2.6-5.1), recent transplantation (OR, 2.7; 95% CI, 1.3-5.2), and adenovirus type 5 (OR, 2.7; 95% CI, 1.5-4.7) or type 21 infection (OR, 7.6; 95% CI, 2.6-22.3) increased the risk of severe disease.
SUMMARYBackground.Bloodstream infection (BSI) is a major cause of morbidity and mortality throughout the world. Rapid identification of bloodstream pathogens is a laboratory practice that supports strategies for rapid transition to direct targeted therapy by providing for timely and effective patient care. In fact, the more rapidly that appropriate antimicrobials are prescribed, the lower the mortality for patients with sepsis. Rapid identification methods may have multiple positive impacts on patient outcomes, including reductions in mortality, morbidity, hospital lengths of stay, and antibiotic use. In addition, the strategy can reduce the cost of care for patients with BSIs.Objectives.The purpose of this review is to evaluate the evidence for the effectiveness of three rapid diagnostic practices in decreasing the time to targeted therapy for hospitalized patients with BSIs. The review was performed by applying the Centers for Disease Control and Prevention's (CDC's) Laboratory Medicine Best Practices Initiative (LMBP) systematic review methods for quality improvement (QI) practices and translating the results into evidence-based guidance (R. H. Christenson et al., Clin Chem 57:816–825, 2011, http://dx.doi.org/10.1373/clinchem.2010.157131).Search strategy.A comprehensive literature search was conducted to identify studies with measurable outcomes. A search of three electronic bibliographic databases (PubMed, Embase, and CINAHL), databases containing “gray” literature (unpublished academic, government, or industry evidence not governed by commercial publishing) (CIHI, NIHR, SIGN, and other databases), and the Cochrane database for English-language articles published between 1990 and 2011 was conducted in July 2011.Dates of search.The dates of our search were from 1990 to July 2011.Selection criteria.Animal studies and non-English publications were excluded. The search contained the following medical subject headings: bacteremia; bloodstream infection; time factors; health care costs; length of stay; morbidity; mortality; antimicrobial therapy; rapid molecular techniques, polymerase chain reaction (PCR); in situ hybridization, fluorescence; treatment outcome; drug therapy; patient care team; pharmacy service, hospital; hospital information systems; Gram stain; pharmacy service; and spectrometry, mass, matrix-assisted laser desorption-ionization. Phenotypic as well as the following key words were searched: targeted therapy; rapid identification; rapid; Gram positive; Gram negative; reduce(ed); cost(s); pneumoslide; PBP2; tube coagulase; matrix-assisted laser desorption/ionization time of flight; MALDI TOF; blood culture; EMR; electronic reporting; call to provider; collaboration; pharmacy; laboratory; bacteria; yeast; ICU; and others. In addition to the electronic search being performed, a request for unpublished quality improvement data was made to the clinical laboratory community.Main results.Rapid molecular testing with direct communication significantly improves timeliness compared to standard testing. Rapid ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.