Satellite‐based measurements of the column CH2O/NO2 ratio have previously been used to estimate near‐surface ozone (O3) sensitivity (i.e., NOx or VOC limited), and the forthcoming launch of air quality‐focused geostationary satellites provides a catalyst for reevaluating the ability of satellite‐measured CH2O/NO2 to be used in this manner. In this study, we use a 0‐D photochemical box model to evaluate O3 sensitivity and find that the relative rate of radical termination from radical‐radical interactions to radical‐NOx interactions (referred to as LROx/LNOx) provides a good indicator of maximum O3 production along NOx ridgelines. Using airborne measurements from NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relative to Air Quality (DISCOVER‐AQ) deployments in Colorado, Maryland, and Houston, we show that in situ measurements of CH2O/NO2 can be used to indicate O3 sensitivity, but there is an important “transition/ambiguous” range whereby CH2O/NO2 fails to categorize O3 sensitivity, and the range and span of this transition/ambiguous range varies regionally. Then, we apply these findings to aircraft‐derived column density measurements from DISCOVER‐AQ and find that inhomogeneities in vertical mixing in the lower troposphere further degrades the ability of column CH2O/NO2 to indicate near‐surface O3 sensitivity (i.e., the transition/ambiguous range is much larger than indicated by in situ data alone), and we hypothesize that the global transition/ambiguous range is sufficiently large to make the column CH2O/NO2 ratio unuseful for classifying near‐surface O3 sensitivity. Lastly, we present a case study from DISCOVER‐AQ‐Houston that suggests that O3 sensitivity on exceedance days may be substantially different than on nonexceedance days (which may be observable from space) and explore the diurnal evolution of O3 sensitivity, O3 production, and the column CH2O/NO2 ratio. The results of these studies suggest that although satellite measurements of CH2O/NO2 alone may not be sufficient for accurately classifying near‐surface O3 sensitivity, new techniques offered by geostationary platforms may nonetheless provide methods for using space‐based measurements to develop O3 mitigation strategies.
The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is an interdisciplinary investigation to improve understanding of Earth's ocean ecosystem-aerosol-cloud system. Specific overarching science objectives for NAAMES are to (1) characterize plankton ecosystem properties during primary phases of the annual cycle and their dependence on environmental forcings, (2) determine how these phases interact to recreate each year the conditions for an annual plankton bloom, and (3) resolve how remote marine aerosols and boundary layer clouds are influenced by plankton ecosystems. Four NAAMES field campaigns were conducted in the western subarctic Atlantic between November 2015 and April 2018, with each campaign targeting specific Behrenfeld et al. NAAMES Overview seasonal events in the annual plankton cycle. A broad diversity of measurements were collected during each campaign, including ship, aircraft, autonomous float and drifter, and satellite observations. Here, we present an overview of NAAMES science motives, experimental design, and measurements. We then briefly describe conditions and accomplishments during each of the four field campaigns and provide information on how to access NAAMES data. The intent of this manuscript is to familiarize the broad scientific community with NAAMES and to provide a common reference overview of the project for upcoming publications.
We statistically analyze the impact of jet fuel properties on aerosols emitted by the NASA Douglas DC-8 (Tail No. N817NA) CFM56-2-C1 engines burning 15 different aviation fuels. Data were collected for this single engine type during four different, comprehensive ground tests conducted over the past decade, which allow us to clearly link changes in aerosol emissions to fuel compositional changes. It is found that the fuel aromatic and sulfur content most affect the volatile aerosol fraction, which dominates the variability (but not necessarily the magnitude) of the number and volume emissions indices (EIs) over all engine powers. Meanwhile, the naphthalenic content of the fuel determines the magnitude of the nonvolatile number and volume EI as well as the black carbon mass EI. Linear regression coefficients are reported for each aerosol EI in terms of these properties, engine fuel flow rate, and ambient temperature and show that reducing both fuel sulfur content and naphthalenes to near-zero levels would result in roughly a 10-fold decrease in aerosol number emitted per kilogram of fuel burned. This work informs future efforts to model aircraft emissions changes as the aviation fleet gradually begins to transition toward low-aromatic, low-sulfur alternative jet fuels from biobased or Fischer–Tropsch production pathways.
Contrail cirrus account for the major share of aviation’s climate impact. Yet, the links between jet fuel composition, contrail microphysics and climate impact remain unresolved. Here we present unique observations from two DLR-NASA aircraft campaigns that measured exhaust and contrail characteristics of an Airbus A320 burning either standard jet fuels or low aromatic sustainable aviation fuel blends. Our results show that soot particles can regulate the number of contrail cirrus ice crystals for current emission levels. We provide experimental evidence that burning low aromatic sustainable aviation fuel can result in a 50 to 70% reduction in soot and ice number concentrations and an increase in ice crystal size. Reduced contrail ice numbers cause less energy deposition in the atmosphere and less warming. Meaningful reductions in aviation’s climate impact could therefore be obtained from the widespread adoptation of low aromatic fuels, and from regulations to lower the maximum aromatic fuel content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.