There has recently been a surge of work in explanatory artificial intelligence (XAI). This research area tackles the important problem that complex machines and algorithms often cannot provide insights into their behavior and thought processes. XAI allows users and parts of the internal system to be more transparent, providing explanations of their decisions in some level of detail. These explanations are important to ensure algorithmic fairness, identify potential bias/problems in the training data, and to ensure that the algorithms perform as expected. However, explanations produced by these systems is neither standardized nor systematically assessed. In an effort to create best practices and identify open challenges, we describe foundational concepts of explainability and show how they can be used to classify existing literature. We discuss why current approaches to explanatory methods especially for deep neural networks are insufficient. Finally, based on our survey, we conclude with suggested future research directions for explanatory artificial intelligence.
Voters are understandably concerned about election security. News reports of possible election interference by foreign powers, of unauthorized voting, of voter disenfranchisement, and of technological failures call into question the integrity of elections worldwide. This article examines the suggestions that “voting over the Internet” or “voting on the blockchain” would increase election security, and finds such claims to be wanting and misleading. While current election systems are far from perfect, Internet- and blockchain-based voting would greatly increase the risk of undetectable, nation-scale election failures. Online voting may seem appealing: voting from a computer or smartphone may seem convenient and accessible. However, studies have been inconclusive, showing that online voting may have little to no effect on turnout in practice, and it may even increase disenfranchisement. More importantly, given the current state of computer security, any turnout increase derived from Internet- or blockchain-based voting would come at the cost of losing meaningful assurance that votes have been counted as they were cast, and not undetectably altered or discarded. This state of affairs will continue as long as standard tactics such as malware, zero day, and denial-of-service attacks continue to be effective. This article analyzes and systematizes prior research on the security risks of online and electronic voting, and shows that not only do these risks persist in blockchain-based voting systems, but blockchains may introduce ‘additional’ problems for voting systems. Finally, we suggest questions for critically assessing security risks of new voting system proposals.
Twenty years ago, law enforcement organizations lobbied to require data and communication services to engineer their products to guarantee law enforcement access to all data. After lengthy debate and vigorous predictions of enforcement channels "going dark," these attempts to regulate the emerging Internet were abandoned. In the intervening years, innovation on the Internet flourished, and law enforcement agencies found new and more effective means of accessing vastly larger quantities of data. Today we are again hearing calls for regulation to mandate the provision of exceptional access mechanisms. In this report, a group of computer scientists and security experts, many of whom participated in a 1997 study of these same topics, has convened to explore the likely effects of imposing extraordinary access mandates.We have found that the damage that could be caused by law enforcement exceptional access requirements would be even greater today than it would have been 20 years ago. In the wake of the growing economic and social cost of the fundamental insecurity of today's Internet environment, any proposals that alter the security dynamics online should be approached with caution. Exceptional access would force Internet system developers to reverse "forward secrecy" design practices that seek to minimize the impact on user privacy when systems are breached. The complexity of today's Internet environment, with millions of apps and globally connected services, means that new law enforcement requirements are likely to introduce unanticipated, hard to detect security flaws. Beyond these and other technical vulnerabilities, the prospect of globally deployed exceptional access systems raises difficult problems about how such an environment would be governed and how to ensure that such systems would respect human rights and the rule of law.
Voter registration is an essential part of almost any election process, and its security is a critical component of election security. Yet, despite notable compromises of voter registration systems, relatively little academic work has been devoted to securing voter registration systems, compared to research on other aspects of election security. In this paper, we present a systematic treatment of voter registration system security. We propose the first rigorous definitional framework for voter registration systems, describing the entities and core functionalities inherent in most voter registration systems, the jurisdictional policies that constrain specific implementations, and key security properties. Our definitions are configurable based on jurisdiction-specific parameters and policies. We provide a template for the structured presentation of detailed jurisdictional policy information, via a series of tables, and illustrate its application with detailed case studies of the voter registration systems of three US states and Panama. Throughout our research, with the aim of realism and practical applicability, we consulted current and former US election officials, civil society, and nonprofits in the elections space. We conclude with a list of critical questions regarding voter registration security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.