This perspective presents an overview of how confinement can be used to tune electrochemical reactivity and the concept of using molecularly pillared 2D and layered materials to experimentally study this phenomenon. Many theoretical and computational studies have shown that the confinement of liquid-phase reactants to nano-or subnanometer spaces influences their electrochemical reactivity. While confinement is ubiquitous in various high surface area materials used as electrodes, experimental studies of this effect are scarce due to the challenge of deconvoluting the many competing influences on the measured electrochemical signal. This creates an exciting opportunity for the synthesis of well-defined materials platforms capable of confining liquid electrolytes and reactants for understanding electrochemical reactivity under confinement. In particular, a precise confinement geometry can be achieved with the use of 2D and layered materials whose interlayers have been tuned with the use of molecular pillars.
The development of new electrocatalysts for the hydrogen evolution reaction (HER) could reduce the dependence on Pt and other rare metals and enable large-scale production of hydrogen with near-zero carbon emissions. Mechanistic insight into the electrocatalytic activity of a material helps to accelerate the development of new electrocatalysts. Alternative electrocatalyst materials such as transition metal oxides and sulfides can undergo insertion reactions that change their properties. Recent reports indicate that the presence of inserted ions can influence the electrocatalytic activity. Here, we utilized a materials chemistry approach to understand the role of proton insertion in the HER activity of the layered tungsten oxide hydrates (WO3·xH2O, x = 1, 2). We synthesized a series of tungsten oxide hydrates along with an octylamine-pillared tungsten oxide (OA–WO3). We used cyclic voltammetry to study the electrochemical reactivity of each material and performed ex situ x-ray diffraction and Raman spectroscopy to understand bulk and surface structural changes during electrochemical cycling. We show an inverse relationship between the degree of proton insertion and HER overpotential in tungsten oxides: the lack of proton insertion leads to a high overpotential for the HER. We discuss three hypotheses for how proton insertion leads to the HER activity in WO3·xH2O: (1) proton insertion changes the electronic band structure of WO3·xH2O, (2) the presence of bulk protons can influence ΔGH,ads at the surface sites, and (3) the inserted protons may participate in the HER mechanism on WO3·xH2O. Overall, this work shows the critical role of proton insertion in enabling the high HER activity in tungsten oxides.
Ultraviolet (UV) light emitting diodes (LEDs) may be a viable option as a UV light source for advanced oxidation processes (AOPs) utilizing photocatalysts or oxidizing agents such as hydrogen peroxide. The effect of UV-LED duty cycle, expressed as the percentage of time the LED is powered, was investigated in an AOP with hydrogen peroxide, using methylene blue (MB) to assess contaminant degradation. The UV-LED AOP degraded the MB at all duty cycles. However, adsorption of MB onto the LED emitting surface caused a linear decline in reactor performance over time. With regard to the effect of duty cycle, the observed rate constant of MB degradation, after being adjusted to account for the duty cycle, was greater for 5 and 10% duty cycles than higher duty cycles, providing a value approximately 160% higher at 5% duty cycle than continuous operation. This increase in adjusted rate constant at low duty cycles, as well as contaminant fouling of the LED surface, may impact design and operational considerations for pulsed UV-LED AOP systems.
Transition metal chalcogenide nanoparticles (NPs) are of interest for energy applications, including batteries, supercapacitors, and electrocatalysis. Many methods have been established for synthesizing Ni NPs, and conversion chemistry to form Ni oxide and phosphides from template Ni NPs is well-understood.Sulfidation and selenidation of Ni NPs have been much less explored, however. We report a method for the conversion of Ni template NPs into sulfide and selenide product NPs using elemental sulfur, 1-hexadecanthiol, thiourea, trioctylphosphine sulfide, elemental selenium, and selenourea. While maintaining mole ratios of 2 mmol sulfur/selenium precursor: mmol Ni, products with phases of Ni 3 S 2 , Ni 9 S 8 , NiS, NiSO 4 •6H 2 O, Ni 3 S 4 , Ni 3 Se 2 , and NiSe have been obtained. The products have voids that form through the Kirkendall effect during interdiffusion. Trends relating the chemical properties of the precursors to the phases of the products have been identified. While some precursors contained phosphorus, there was no significant incorporation of phosphorus in any of the products. An increase of the NP size during sulfidation and selenidation is consistent with ripening. The application of Ni sulfide and selenide NPs as electrocatalysts for the hydrogen evolution reaction is also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.