Familial cancer syndromes have helped to define the role of tumor suppressor genes in the development of cancer. The dominantly inherited Li-Fraumeni syndrome (LFS) is of particular interest because of the diversity of childhood and adult tumors that occur in affected individuals. The rarity and high mortality of LFS precluded formal linkage analysis. The alternative approach was to select the most plausible candidate gene. The tumor suppressor gene, p53, was studied because of previous indications that this gene is inactivated in the sporadic (nonfamilial) forms of most cancers that are associated with LFS. Germ line p53 mutations have been detected in all five LFS families analyzed. These mutations do not produce amounts of mutant p53 protein expected to exert a trans-dominant loss of function effect on wild-type p53 protein. The frequency of germ line p53 mutations can now be examined in additional families with LFS, and in other cancer patients and families with clinical features that might be attributed to the mutation.
As normal cells progress toward malignancy, they must switch to an angiogenic phenotype to attract the nourishing vasculature that they depend on for their growth. In cultured fibroblasts from Li-Fraumeni patients, this switch was found to coincide with loss of the wild-type allele of the p53 tumor suppressor gene and to be the result of reduced expression of thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis. Transfection assays revealed that p53 can stimulate the endogenous TSP-1 gene and positively regulate TSP-1 promoter sequences. These data indicate that, in fibroblasts, wild-type p53 inhibits angiogenesis through regulation of TSP-1 synthesis.
Molecular cloning of the transforming gene from a chemically transformed human osteosarcoma-derived cell line enables the gene to be mapped to chromosome 7 (7p11.4-7qter) and by this criterion and by direct hybridization to be shown to be unrelated to known oncogenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.