The purpose of this investigation was to evaluate differences in quadriceps corticospinal excitability, spinal-reflexive excitability, strength, and voluntary activation before, 2 weeks post and 6 months post-anterior cruciate ligament reconstruction (ACLr). This longitudinal, case-control investigation examined 20 patients scheduled for ACLr (11 females, 9 males; age: 20.9 ± 4.4 years; height:172.4 ± 7.5 cm; weight:76.2 ± 11.8 kg) and 20 healthy controls (11 females, 9 males; age:21.7 ± 3.7 years; height: 173.7 ± 9.9 cm; weight: 76.1 ± 19.7 kg). Maximal voluntary isometric contractions (MVIC), central activation ratio (CAR), normalized Hoffmann spinal reflexes, active motor threshold (AMT), and normalized motor-evoked potential (MEP) amplitudes at 120% of AMT were measured in the quadriceps muscle at the specific time points. ACLr patients demonstrated bilateral reductions in spinal-reflexive excitability compared with controls before surgery (P = 0.02) and 2 weeks post-surgery (P ≤ 0.001). ACLr patients demonstrated higher AMT at 6 months post-surgery (P ≤ 0.001) in both limbs. No MEP differences were detected. Quadriceps MVIC and CAR were lower in both limbs of the ACLr group before surgery and 6 months post-surgery (P ≤ 0.05) compared with controls. Diminished excitability of spinal-reflexive and corticospinal pathways are present at different times following ACLr and occur in combination with clinical deficits in quadriceps strength and activation. Early rehabilitation strategies targeting spinal-reflexive excitability may help improve postoperative outcomes, while later-stage rehabilitation may benefit from therapeutic techniques aimed at improving corticospinal excitability.
Recent studies suggest that the cost of muscle contraction may be reduced in old age, which could be an important mediator of age-related differences in muscle fatigue under some circumstances. We used phosphorus magnetic resonance spectroscopy and electrically elicited contractions to examine the energetic cost of ankle dorsiflexion in 9 young (Y; 26 +/- 3.8 yr; mean +/- SD) and 9 older healthy men (O; 72 +/- 4.6). We hypothesized that the energy cost of twitch and tetanic contractions would be lower in O and that this difference would be greater during tetanic contractions at f(50) (frequency at 50% of peak force from force-frequency relationship) than at 25 Hz. The energy costs of a twitch (O = 0.13 +/- 0.04 mM ATP/twitch, Y = 0.18 +/- 0.06; P = 0.045) and a 60-s tetanus at 25 Hz (O = 1.5 +/- 0.4 mM ATP/s, Y = 2.0 +/- 0.2; P = 0.01) were 27% and 26% lower in O, respectively, while the respective force.time integrals were not different. In contrast, energy cost during a 90-s tetanus at f(50) (O = 10.9 +/- 2.0 Hz, Y = 14.8 +/- 2.1 Hz; P = 0.002) was 49% lower in O (1.0 +/- 0.2 mM ATP/s) compared with Y (1.9 +/- 0.2; P < 0.001). Y had greater force potentiation during the f(50) protocol, which accounted for the greater age difference in energy cost at f(50) compared with 25 Hz. These results provide novel evidence of an age-related difference in human contractile energy cost in vivo and suggest that intramuscular changes contribute to the lower cost of contraction in older muscle. This difference in energetics may provide an important mechanism for the enhanced fatigue resistance often observed in older individuals.
To determine the effect of core muscle strengthening on balance in community-dwelling older adults, 24 healthy men and women between 65 and 85 years old were randomized to either exercise (EX; n = 12) or control (CON; n = 12) groups. The exercise group performed a core strengthening home exercise program thrice weekly for 6 wk. Core muscle (curl-up test), functional reach (FR) and Star Excursion Balance Test (SEBT) were assessed at baseline and follow-up. There were no group differences at baseline. At follow-up, EX exhibited significantly greater improvements in curl-up (Cohen's d = 4.4), FR (1.3), and SEBT (>1.9 for all directions) than CON. The change in curl-up was significantly correlated with the change in FR (r = .44, p = .03) and SEBT (r > .61, p ≤ .002). These results suggest that core strengthening should be part of a comprehensive balance-training program for older adults.
We have developed an optical method for the evaluation of the oxygen consumption (Vo(2)) in microscopic volumes of spinotrapezius muscle. Using phosphorescence quenching microscopy (PQM) for the measurement of interstitial Po(2), together with rapid pneumatic compression of the organ, we recorded the oxygen disappearance curve (ODC) in the muscle of the anesthetized rats. A 0.6-mm diameter area in the tissue, preloaded with the phosphorescent oxygen probe, was excited once a second by a 532-nm Q-switched laser with pulse duration of 15 ns. Each of the evoked phosphorescence decays was analyzed to obtain a sequence of Po(2) values that constituted the ODC. Following flow arrest and tissue compression, the interstitial Po(2) decreased rapidly and the initial slope of the ODC was used to calculate the Vo(2). Special analysis of instrumental factors affecting the ODC was performed, and the resulting model was used for evaluation of Vo(2). The calculation was based on the observation of only a small amount of residual blood in the tissue after compression. The contribution of oxygen photoconsumption by PQM and oxygen inflow from external sources was evaluated in specially designed tests. The average oxygen consumption of the rat spinotrapezius muscle was Vo(2) = 123.4 ± 13.4 (SE) nl O(2)/cm(3) · s (N = 38, within 6 muscles) at a baseline interstitial Po(2) of 50.8 ± 2.9 mmHg. This technique has opened the opportunity for monitoring respiration rates in microscopic volumes of functioning skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.