Prior studies suggest that field-collected fish (Fundulus heteroclitus) from a creosote-contaminated Superfund site (Atlantic Wood Industries site, Elizabeth River, VA, USA) have enhanced tolerance to local, contaminated sediments. This study was designed to test whether other populations in the Elizabeth River at less contaminated sites also show similar tolerance and whether this tolerance is heritable. To test this, F. heteroclitus populations were sampled from four sites within the Elizabeth River with varying sediment polycyclic aromatic hydrocarbon (PAH) concentrations (3.9-264 ng PAH/g dry wt 10(3)) and one reference site in a nearby, uncontaminated estuary (York River, VA, USA; 0.27 ng PAH/g dry wt x 10(3)). Embryo assays were performed to quantify population differences in teratogenic effects during contaminated sediment exposure. Atlantic Wood sediment was mixed with reference sediment to achieve a range of sediment concentrations. Minimal differences were observed in teratogenic effects among fish taken from sites within the Elizabeth River; however, embryos of fish collected from a nearby, uncontaminated York River site and exposed to contaminated sediments had a significantly higher proportion of embryos with cardiac abnormalities than those from the Elizabeth River sites. Embryos from wild-caught and laboratory-reared Elizabeth River F. heteroclitus were simultaneously exposed to contaminated sediments, and no significant tolerance differences were found between embryos from fish taken directly from the field and those reared for a generation in the lab. Differences between fish populations from the two estuaries were larger than differences within the Elizabeth River, and these differences in tolerance were heritable.
Prior studies suggest that field-collected fish (Fundulus heteroclitus) from a creosote-contaminated Superfund site (Atlantic Wood Industries site, Elizabeth River, VA, USA) have enhanced tolerance to local, contaminated sediments. This study was designed to test whether other populations in the Elizabeth River at less contaminated sites also show similar tolerance and whether this tolerance is heritable. To test this, F. heteroclitus populations were sampled from four sites within the Elizabeth River with varying sediment polycyclic aromatic hydrocarbon (PAH) concentrations (3.9-264 ng PAH/g dry wt 10(3)) and one reference site in a nearby, uncontaminated estuary (York River, VA, USA; 0.27 ng PAH/g dry wt x 10(3)). Embryo assays were performed to quantify population differences in teratogenic effects during contaminated sediment exposure. Atlantic Wood sediment was mixed with reference sediment to achieve a range of sediment concentrations. Minimal differences were observed in teratogenic effects among fish taken from sites within the Elizabeth River; however, embryos of fish collected from a nearby, uncontaminated York River site and exposed to contaminated sediments had a significantly higher proportion of embryos with cardiac abnormalities than those from the Elizabeth River sites. Embryos from wild-caught and laboratory-reared Elizabeth River F. heteroclitus were simultaneously exposed to contaminated sediments, and no significant tolerance differences were found between embryos from fish taken directly from the field and those reared for a generation in the lab. Differences between fish populations from the two estuaries were larger than differences within the Elizabeth River, and these differences in tolerance were heritable.
Equilibrium sorption of tributyltin chloride (TBT) was measured on selected estuarine and freshwater sediments. Isotherms from 24-h equilibrations were linear, with sorption coefficients between 1.1 x 10' and 8.2 x lo3 L/kg. The similarity of sorption and desorption coefficients for these sorbates showed that TBT sorption is reversible. Sorption coefficients decreased with increasing salinity and varied by a factor of 2 over the salinity range 0 to 34%0. Desorption kinetics indicated an initial fast rate followed by a slower rate of desorption, similar to published data for metal ions and hydrophobic organic molecules on sediments. Water and sediment concentrations of TBT at locations in the Chesapeake Bay system were used to calculate apparent sorption coefficients, which generally agreed with laboratory-measured sorption coefficients. Exceptionally high apparent sorption coefficients were found near areas of high vessel activity and may be due to TBT paint chips in the sediment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.