The current crisis of the COVID-19 pandemic around the world has been devastating as many lives have been lost to the novel SARS CoV-2 virus. Thus, there is an urgent need for the right therapeutic drug to curb the disease. However, there is time constraint in drug development, hence the need for drug repurposing approach, a relatively fast and less expensive alternative. In this study, 1,100 Food and Drug Administration (FDA) approved drugs were obtained from DrugBank and trimmed to 791 ligands based on illicitness, withdrawal from the market, being chemical agents rather than drugs, being investigational drugs and having molecular weight greater than 500 (Kg/mol). The ligands were docked against six drug targets of the novel SARS CoV-2 - 3-chymotrypsin-like protease (3CLpro), Angiotensin-converting enzyme (ACE2), ADP ribose phosphatase of NSP3 (NSP3), NSP9 RNA binding protein (NSP9), RNA dependent RNA polymerase (RdRp) and Replicase Polyprotein 1a (RP1a). UCSF Chimera, PyRx and Discovery Studio, were used to prepare the proteins, dock the ligands and visualize the complexes, respectively. Remdesivir, Lopinavir and Hydroxychloroquine were used as reference drugs. Pharmacokinetic properties of the ligands were obtained using AdmetSAR. The binding energies of the standard drugs ranged from -5.4 to -8.7 kcal/mol while over 400 of the ligands screened showed binding energy lower than -5.4 kcal/mol. Out of the 791 number of compounds docked, 10, 91, 132, 92, 54 and 96 compounds showed lower binding energies than all the controls against 3CLPro, ACE2, NSP3, NSP9, RP1a and RdRp, respectively. Ligands that bound all target proteins, and showed the lowest binding energies with good ADMET properties and particularly showed the lowest binding against ACE2 are ethynodiol diacetate (-15.6 kcal/mol), methylnaltrexone (-15.5 kcal/mol), ketazolam (-14.5 kcal/mol) and naloxone (-13.6 kcal/mol). Further investigations are recommended for ethynodiol diacetate, methylnaltrexone, ketazolam and naloxone through preclinical and clinical studies to ascertain their effectiveness.
Background: P-21 activating kinase 4 (PAK4) is implicated in poor prognosis of many human tumors, particularly in triple negative breast cancer (TNBC) progression. Studies have revealed the crucial role of PAK4 in cell proliferation, anchorage-independent growth and cell migration among other hallmarks of cancer. Thus, PAK4 is an attractive target for anti-TNBC drug design and development. In our research, we used in silico methods to investigate the inhibitory potentials of kaempferol against PAK4 as compared with co-crystallized 4T6 and a standard PAK4 inhibitor-KPT-9274. The ligands were docked into the ATP-binding site of the target enzyme and post-docking validations were calculated. Results: In the molecular docking results, kaempferol had higher affinity than the standard KPT-9274. However, the SP and XP docking scores for the co-crystallized 4T6 were the highest. The analyses of the docking poses showed a favorable interaction between kaempferol and the catalytic-important aminoacyl residues, especially GLU396, LEU398 and ASP458 in the ATP-binding site of PAK4 when compared with what was obtained in the 4T6-PAK4 complex. Molecular mechanics based MM-GBSA was used to validate docking results. The free energy calculations revealed that kaempferol may have a favorable biological activity. Furthermore, the druggability of each ligand was assessed using the QikProp module and the SwissADME online tool. Kaempferol possessed a propitious drug-like property when compared to the standard ligands. Conclusions: We, therefore, put forward a logical argument that kaempferol can be further evaluated as a potential PAK4 inhibitor in TNBC.
GSK3B has been an interesting drug target in the pharmaceutical industry. Its dysfunctional expression has prognostic significance in the top 3 cause of death associated with non-communicable diseases (cancer, Alzheimer's disease and type 2 diabetes). Previous studies have shown clearly that inhibiting GSK3B has proven therapeutic significance in Alzheimer's disease, but its contribution to various cancers has not been clearly resolved. In this study we report the contribution and prognostic significance of GSK3B to two breast cancer subtypes; ductal carcinoma in-situ (DCIS) and invasive ductal carcinoma (IDC) using the Oncomine platform. We performed high throughput screening using molecular docking. We identified BT-000775, a compound that was subjected to further computational hit optimization protocols. Through computational predictions, BT-000775 is a highly selective GSK3B inhibitor, with superior binding affinity and robust ADME profiles suitable for the patho-physiological presentations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.