This review aims to systematically analyze ML models from four aspects: type of ML technique, estimation accuracy, model comparison, and estimation context. A systematic literature review of empirical studies was conducted on the ML models published in the last decades. Fifty-one primary studies relevant to the objective of this research were revealed. After investigating these studies, five ML techniques have been employed in brain tumor classification and prediction. Ultimately, the estimation accuracy of these ML models could be regarded and accepted and outperformed non-ML models. ML models have been revealed to be useful in brain tumor classification and prediction. Genetic algorithm among the ML models achieved an accuracy of 100%. Nevertheless, ML models are still restricted in the industry, so initiative and encouragement are needed to make ML models easier. Further work is required on these ML models to verify the accuracy and consider other performance metrics other than the accuracy.
This study proposes a deep learning approach for stock price prediction by bridging the long short-term memory with gated recurrent unit. In its evaluation, the mean absolute error and mean square error were used. The model proposed is an extension of the study of Hossain et al. established in 2018 with an MSE of 0.00098 as its lowest error. The current proposed model is a mix of the bidirectional LSTM and bidirectional GRU resulting in 0.00000008 MSE as the lowest error recorded. The LSTM model recorded 0.00000025 MSE, the GRU model recorded 0.00000077 MSE, and the LSTM + GRU model recorded 0.00000023 MSE. Other combinations of the existing models such as the bi-directional LSTM model recorded 0.00000019 MSE, bi-directional GRU recorded 0.00000011 MSE, bidirectional LSTM + GRU recorded 0.00000027 MSE, LSTM and bi-directional GRU recorded 0.00000020 MSE.
Credit Card fraud has been on the rise for some years now after the introduction of card payment systems. To curb this menace, computational methods have been proposed. Unfortunately, the data available for such a study is highly skewed resulting in the data imbalance problem. In this study, we investigate the performance of some selected data imbalance algorithms employed in the prediction of credit card fraud. A dataset from Kaggle containing 284,315 genuine transactions and 492 fraudulent transactions was used for the evaluation. The machine learning algorithms deployed for the study is Logistic Regression, Naïve Bayes, and the K-Nearest Neighbour algorithm with F1 score and Precision-Recall area under the curve (PR AUC) as the metric. Numerical assessment of the performance of the adopted algorithm gave a rate of 82.5% and 81%, respectively using neighbourhood cleaning rule for undersampling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.