Fragment-based drug design plays an important role in the drug discovery process by reducing the complex small-molecule space into a more manageable fragment space. We leverage the power of deep learning to design ChemPLAN-Net; a model that incorporates the pairwise association of physicochemical features of both the protein drug targets and the inhibitor and learns from thousands of protein co-crystal structures in the PDB database to predict previously unseen inhibitor fragments. Our novel protocol handles the computationally challenging multi-label, multi-class problem, by defining a fragment database and using an iterative feature-pair binary classification approach. By training ChemPLAN-Net on available co-crystal structures of the protease protein family, excluding HIV-1 protease as a target, we are able to outperform fragment docking and recover the target's inhibitor fragments found in co-crystal structures or identified by in-vitro cell assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.