Weissman extrapolation device for estimating extreme quantiles from heavy-tailed distribution is based on two estimators: an order statistic to estimate an intermediate quantile and an estimator of the tail-index. The common practice is to select the same intermediate sequence for both estimators. In this work, we show how an adapted choice of two different intermediate sequences leads to a reduction of the asymptotic bias associated with the resulting refined Weissman estimator. This new bias reduction method is fully automatic and does not involve the selection of extra parameters. Our approach is compared to other bias reduced estimators of extreme quantiles both on simulated and real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.