Lipoproteins are complex molecular assemblies that are key participants in the intricate cascade of extracellular lipid metabolism with important consequences in the formation of atherosclerotic lesions and the development of cardiovascular disease. Multiplexed mass spectrometry (MS) techniques have substantially improved the ability to characterize the composition of lipoproteins. However, these advanced MS techniques are limited by traditional pre-analytical fractionation techniques that compromise the structural integrity of lipoprotein particles during separation from serum or plasma. In this work, we applied a highly effective and gentle hydrodynamic size based fractionation technique, asymmetric flow field-flow fractionation (AF4), and integrated it into a comprehensive tandem mass spectrometry based workflow that was used for the measurement of apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E), free cholesterol (FC), cholesterol esters (CE), triglycerides (TG), and phospholipids (PL) (phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC)). Hydrodynamic size in each of 40 size fractions separated by AF4 was measured by dynamic light scattering. Measuring all major lipids and apolipoproteins in each size fraction and in the whole serum, using total of 0.1 ml, allowed the volumetric calculation of lipoprotein particle numbers and expression of composition in molar analyte per particle number ratios. Measurements in 110 serum samples showed substantive differences between size fractions of HDL and LDL. Lipoprotein composition within size fractions was expressed in molar ratios of analytes (A-I/A-II, C-II/C-I, C-II/C-III. E/C-III, FC/PL, SM/PL, PE/PL, and PI/PL), showing differences in sample categories with combinations of normal and high levels of Total-C and/or Total-TG. The agreement with previous studies indirectly validates the AF4-LC-MS/MS approach and demonstrates the potential of this workflow for characterization of lipoprotein composition in clinical studies using small volumes of archived frozen samples.
PurposeApolipoprotein A‐I (ApoA‐I) and apolipoprotein B‐100 (ApoB‐100) are amphipathic proteins that are strong predictors of cardiovascular disease risk. The traceable calibration of apolipoprotein assays is a persistent challenge, especially for ApoB‐100, which cannot be solubilized in purified form.Experimental designA simultaneous quantitation method for ApoA‐I and ApoB‐100 was developed using tryptic digestion without predigestion reduction and alkylation, followed by LC separation coupled with isotope dilution MS analysis. The accuracy of the method was assured by selecting structurally exposed signature peptides, optimal choice of detergent, protein:enzyme ratio, and incubation time. Peptide calibrators were value assigned by isobaric tagging isotope dilution MS amino acid analysis.ResultsThe method reproducibility was validated in technical repeats of three serum samples, giving 2–3% intraday CVs (N = 5) and <7% interday CVs (N = 21). The repeated analysis of interlaboratory harmonization standards showed −1% difference for ApoA‐I and −12% for ApoB‐100 relative to the assigned value. The applicability of the method was demonstrated by repeated analysis of 24 patient samples with a wide range of total cholesterol and triglyceride levels.Conclusions and clinical relevanceThe method is applicable for simultaneous analysis of ApoA‐I and ApoB‐100 in patient samples, and for characterization of serum pool calibrators for other analytical platforms.
Background Genetic variants in apolipoprotein L1 (APOL1), a protein that protects humans from infection with African trypanosomes, explain a substantial proportion of the excess risk of chronic kidney disease affecting individuals with sub-Saharan ancestry. The mechanisms by which risk variants damage kidney cells remain incompletely understood. In preclinical models, APOL1 expressed in podocytes can lead to significant kidney injury. In humans, studies in kidney transplant suggest that the effects of APOL1 variants are predominantly driven by donor genotype. Less attention has been paid to a possible role for circulating APOL1 in kidney injury. Methods Using liquid chromatography-tandem mass spectrometry, the concentrations of APOL1 were measured in plasma and urine from participants in the Seattle Kidney Study. Asymmetric flow field-flow fractionation was used to evaluate the size of APOL1-containing lipoprotein particles in plasma. Transgenic mice that express wild-type or risk variant APOL1 from an albumin promoter were treated to cause kidney injury and evaluated for renal disease and pathology. Results In human participants, urine concentrations of APOL1 were correlated with plasma concentrations and reduced kidney function. Risk variant APOL1 was enriched in larger particles. In mice, circulating risk variant APOL1-G1 promoted kidney damage and reduced podocyte density without renal expression of APOL1. Conclusions These results suggest that plasma APOL1 is dynamic and contributes to the progression of kidney disease in humans, which may have implications for treatment of APOL1-associated kidney disease and for kidney transplantation.
Aberrations in lipid and lipoprotein metabolic pathways can lead to numerous diseases, including cardiovascular disease, diabetes, neurological disorders, and cancer. The integration of quantitative lipid and lipoprotein profiling of human plasma may provide a powerful approach to inform early disease diagnosis and prevention. In this study, we leveraged data-driven quantitative targeted lipidomics and proteomics to identify specific molecular changes associated with different metabolic risk categories, including hyperlipidemic, hypercholesterolemic, hypertriglyceridemic, hyperglycemic, and normolipidemic conditions. Based on the quantitative characterization of serum samples from 146 individuals, we have determined individual lipid species and proteins that were significantly up- or down-regulated relative to the normolipidemic group. Then, we established protein–lipid topological networks for each metabolic category and linked dysregulated proteins and lipids with defined metabolic pathways. To evaluate the differentiating power of integrated lipidomics and proteomics data, we have built an artificial neural network model that simultaneously and accurately categorized the samples from each metabolic risk category based on the determined lipidomics and proteomics profiles. Together, our findings provide new insights into molecular changes associated with metabolic risk conditions, suggest new condition-specific associations between apolipoproteins and lipids, and may inform new biomarker discovery in lipid metabolism-associated disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.