Background When you make a forex transaction, you sell one currency and buy another. If the currency you buy increases against the currency you sell, you profit, and you do this through a broker as a retail trader on the internet using a platform known as meta trader. Only 2% of retail traders can successfully predict currency movement in the forex market, making it one of the most challenging tasks. Machine learning and its derivatives or hybrid models are becoming increasingly popular in market forecasting, which is a rapidly developing field. Objective While the research community has looked into the methodologies used by researchers to forecast the forex market, there is still a need to look into how machine learning and artificial intelligence approaches have been used to predict the forex market and whether there are any areas that can be improved to allow for better predictions. Our objective is to give an overview of machine learning models and their application in the FX market. Method This study provides a Systematic Literature Review (SLR) of machine learning algorithms for FX market forecasting. Our research looks at publications that were published between 2010 and 2021. A total of 60 papers are taken into consideration. We looked at them from two angles: I the design of the evaluation techniques, and (ii) a meta-analysis of the performance of machine learning models utilizing evaluation metrics thus far. Results The results of the analysis suggest that the most commonly utilized assessment metrics are MAE, RMSE, MAPE, and MSE, with EURUSD being the most traded pair on the planet. LSTM and Artificial Neural Network are the most commonly used machine learning algorithms for FX market prediction. The findings also point to many unresolved concerns and difficulties that the scientific community should address in the future. Conclusion Based on our findings, we believe that machine learning approaches in the area of currency prediction still have room for development. Researchers interested in creating more advanced strategies might use the open concerns raised in this work as input.
Since it is one of the world's most significant financial markets, the foreign exchange (Forex) market has attracted a large number of investors. Accurately anticipating the forex trend has remained a popular but difficult issue to aid Forex traders' trading decisions. It is always a question of how precise a Forex prediction can be because of the market's tremendous complexity. The fast advancement of machine learning in recent decades has allowed artificial neural networks to be effectively adapted to several areas, including the Forex market. As a result, a slew of research articles aimed at improving the accuracy of currency forecasting has been released. The Long Short-Term Memory (LSTM) neural network, which is a special kind of artificial neural network developed exclusively for time series data analysis, is frequently used. Due to its high learning capacity, the LSTM neural network is increasingly being utilized to predict advanced Forex trading based on previous data. This model, on the other hand, can be improved by stacking it. The goal of this study is to choose a dataset using the Hurst exponent, then use a two-layer stacked Long Short-Term Memory (TLS-LSTM) neural network to forecast the trend and conduct a correlation analysis. The Hurst exponent (h) was used to determine the predictability of the Australian Dollar and United States Dollar (AUD/USD) dataset. TLS-LSTM algorithm is presented to improve the accuracy of Forex trend prediction of Australian Dollar and United States Dollar (AUD/USD). A correlation study was performed between the AUD/USD, the Euro and the Australian Dollar (EUR/AUD), and the Australian Dollar and the Japanese Yen (AUD/JPY) to see how AUD/USD movement affects EUR/AUD and AUD/JPY. The model was compared with Single-Layer Long Short-Term (SL-LSTM), Multilayer Perceptron (MLP), and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise–Improved Firefly Algorithm Long Short-Term Memory. Based on the evaluation metrics Mean Square Error (MSE), Root Mean Square Error, and Mean Absolute Error, the suggested TLS-LSTM, whose data selection is based on the Hurst exponent (h) value of 0.6026, outperforms SL-LSTM, MLP, and CEEMDAN-IFALSTM. The correlation analysis conducted shows both positive and negative relations between AUD/USD, EUR/AUD, and AUD/JPY which means that a change in AUD/USD will affect EUR/AUD and AUD/JPY as recorded depending on the magnitude of the correlation coefficient (r).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.