BACKGROUND: Disk herniation is a primary cause of radicular back pain. The purpose of this study was to evaluate the antiallodynic effective dose in 50% of the sample (ED 50 ) and dorsal root ganglion (DRG) protein modulation of a peripheral direct adenosine monophosphate kinase alpha (AMPKα) activator (O304) in a murine model of lumbar disk puncture. METHODS: Male (n = 28) and female (n = 28) mice (C57BL6/J) were assessed for hind paw withdrawal threshold (PWT) and burrowing. Abdominal surgery was performed on all mice, and 48 received a lumbar disk puncture (27-G needle), with 8 serving as nondisk puncture controls. Assessments were repeated at day 7, and mice were then randomized into 5 groups of equal numbers of males and females: O304 at 100 mg/kg (n = 10), 150 mg/kg (n = 10), 200 mg/ kg (n = 10), and 250 mg/kg (n = 10) or drug vehicle (n = 8). Starting on day 7, mice received daily gavages of O304 or vehicle for 7 days. On days 14 and 21 PWT and on day 14 burrowing were assessed. The area under the PWT by time curve (AUC) from day 7 to 21 was determined by trapezoidal integration. DRG protein modulation was evaluated in male (n = 10) and female (n = 10) mice (C57BL6/J). Following disk puncture, mice were randomized to receive O304 200 mg/kg or vehicle for 7 days starting on day 7. On day 14, mice were euthanized; the DRG harvested and immunoblot performed for mammalian target of rapamycin (mTOR), transient receptor potential ankyrin 1 (TRPA1), phosphorylated adenosine monophosphate kinase (p-AMPK), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated eukaryotic translation initiation factor 2 subunit 1 (p-EIF2S1), phosphorylated eukaryotic translation initiation factor 4e (p-EIF4E), and glyceraldehyde 3-phosphate dehydrogenase (GADPH). RESULTS: Disk puncture decreased PWT greater in female mice compared with male mice and decreased burrowing at 7 days. PWTs were increased with increasing doses of O304 from 150 to 250 mg/g on day 14 and sustained through day 21. The ED 50 (95% confidence interval [CI]) for reducing mechanical allodynia was 140 (118-164) mg/kg. Burrowing was not increased at day 14 compared to day 7 by O304 administration. Compared to vehicle-treated animals, O304 increased (95% CI) the p-AMPK/GADPH ratio, difference 0.27 (0.08-0.45; P = .004) and decreased (95% CI) the ratios of p-TRPA1, p-ERK1/2, pEIF4E, and p-EIF2S1 to GADPH by −0.49 (−0.61 to −0.37; P < .001), −0.53 (−0.76 to −0.29; P < .001), −0.27 (−0.42 to 0.11; P = .001), and −0.21 (−0.32 to −0.08; P = .003) in the DRG, respectively. CONCLUSIONS: The direct peripheral AMPK activator O304 reduced allodynia in a dose-dependent manner, and immunoblot studies of the DRG showed that O304 increased p-AMPK and decreased TRPA1, p-ERK1/2, as well as translation factors involved in neuroplasticity. Our findings confirm the role of peripheral AMPKα activation in modulating nociceptive pain. (Anesth Analg 2022;135:1293-303) KEY POINTS• Question: Does the direct peripheral adenosine monophosphate kinase alpha (AMPKα) activa...
BACKGROUND:The ketamine metabolite (2R,6R)-hydroxynorketamine ([2R,6R]-HNK) has analgesic efficacy in murine models of acute, neuropathic, and chronic pain. The purpose of this study was to evaluate the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) dependence of (2R,6R)-HNK analgesia and protein changes in the hippocampus in murine pain models administered (2R,6R)-HNK or saline. METHODS: All mice were CD-1 IGS outbred mice. Male and female mice underwent plantar incision (PI) (n = 60), spared nerve injury (SNI) (n = 64), or tibial fracture (TF) (n = 40) surgery on the left hind limb. Mechanical allodynia was assessed using calibrated von Frey filaments. Mice were randomized to receive saline, naloxone, or the brain-penetrating AMPA blocker (1,2,3,quinoxaline-7-sulfonamide [NBQX]) before (2R,6R)-HNK 10 mg/kg, and this was repeated for 3 consecutive days. The area under the paw withdrawal threshold by time curve for days 0 to 3 (AUC 0-3d ) was calculated using trapezoidal integration. The AUC 0-3d was converted to percent antiallodynic effect using the baseline and pretreatment values as 0% and 100%. In separate experiments, a single dose of (2R,6R)-HNK 10 mg/kg or saline was administered to naive mice (n = 20) and 2 doses to PI (n = 40), SNI injury (n = 40), or TF (n = 40) mice. Naive mice were tested for ambulation, rearing, and motor strength. Immunoblot studies of the right hippocampal tissue were performed to evaluate the ratios of glutamate ionotropic receptor (AMPA) type subunit 1 (GluA1), glutamate ionotropic receptor (AMPA) type subunit 2 (GluA2), phosphorylated voltage-gated potassium channel 2.1 (p-Kv2.1), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-AKT), phosphorylated extracellular signal-regulated kinase (p-ERK), CXC chemokine receptor 4 (CXCR4), phosphorylated eukaryotic translation initiation factor 2 subunit 1 (p-EIF2SI), and phosphorylated eukaryotic translation initiation factor 4E (p-EIF4E) to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). RESULTS: No model-specific gender difference in antiallodynic responses before (2R,6R)-HNK administration was observed. The antiallodynic AUC 0-3d of (2R,6R)-HNK was decreased by NBQX but not with pretreatment with naloxone or saline. The adjusted mean (95% confidence interval [CI]) antiallodynic effect of (2R,6R)-HNK in the PI, SNI, and TF models was 40.7% (34.1%-47.3%), 55.1% (48.7%-61.5%), and 54.7% (46.5%-63.0%), greater in the SNI, difference 14.3% (95% CI, 3.1-25.6; P = .007) and TF, difference 13.9% (95% CI, 1.9-26.0; P = .019) compared to the PI model. No effect of (2R,6R)-HNK on ambulation, rearing, or motor coordination was observed. Administration of (2R,6R)-HNK was associated with increased GluA1, GluA2, p-Kv2.1, and p-CaMKII and decreased BDNF ratios in the hippocampus, with model-specific variations in proteins involved in other pain pathways. CONCLUSIONS: (2R,6R)-HNK analgesia is AMPA-dependent, and (2R,6R)-HNK affected gluta...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.