The early transfusion of plasma is important to ensure optimal survival of patients with traumatic hemorrhage. In military and remote or austere civilian settings, it may be impossible to move patients to hospital facilities within the first few hours of injury. A dried plasma product with reduced logistical requirements is needed to enable plasma transfusion where medically needed, instead of only where freezers and other equipment are available. First developed in the 1930s, pooled lyophilized plasma was widely used by British and American forces in WWII and the Korean War. Historical dried plasma products solved the logistical problem but were abandoned because of disease transmission. Modern methods to improve blood safety have made it possible to produce safe and effective dried plasma. Dried plasma products are available in France, Germany, South Africa, and a limited number of other countries. However, no product is available in the US. Promising products are in development that employ different methods of drying, pathogen reduction, pooling, packaging, and other approaches. Although challenges exist, the in vitro and in vivo data suggest that these products have great potential to be safe and effective. The history, state of the science, and recent developments in dried plasma are reviewed.
Hyperglycemia can upregulate protein kinase C (PKC), which may be an important mediator of the progression from normal heart and muscle function to diabetic myopathy in the myocardium and skeletal muscle in type 1 insulin-dependent diabetes mellitus (IDM). We evaluated this possibility during the early stage of IDM in BB/Wor diabetic (D) rats and age-matched BB/Wor diabetes-resistant (DR) rats. Interventricular septal thickness, E wave peak velocity of tricuspid inflow (both minimum and maximum), and left ventricular (LV) weight index were increased, and the rate of change in LV pressure (LV dP/d t) decreased in D rats subjected to M-mode and two-dimensional echocardiography and hemodynamic recording of heart rate, LV pressure (LVP), +LV dP/d t, −LV dP/d t, and LV end-diastolic pressure (LVEDP) in vivo and in vitro 41 days after the onset of hyperglycemia. Whole ventricle basal PKC activity was increased by 44.4 and 18.4% in the particulate and soluble fractions, respectively, from D rats compared with that from DR rats using r-32P phosphorylation of appropriate peptide substrates. When measured by Western blot gel densitometry, particulate PKC-α and PKC-δ content increased by 89 and 24%, respectively, but soluble PKC-β and soluble and particulate PKC-ε were unchanged compared with that of DR rats. Similarly, gracilis muscle PKC activity and PKC-α and PKC-δ were elevated in the gracilis muscle, whereas that of the circulating neutrophil did not differ between the D and DR rats. Thus, in vivo, the early diabetic cardiomyopathy of the D rat is characterized by a restrictive LV with increased septal thickness and is associated with elevated PKC activity and increased amounts of myocardial particulate PKC-α and PKC-δ, which are also seen in the skeletal muscle. We conclude that increased PKC isozymes may play a pivotal role during IDM in the development of diabetic cardiomyopathy and skeletal muscle myopathy.
Transfusion of plasma early after severe injury has been associated with improved survival. There are significant logistic factors that limit the ability to deliver plasma where needed in austere environments, such as the battlefield or during a significant civilian emergency. While some countries have access to more logistically supportable dried plasma, there is no such product approved for use in the United States. There is a clear need for a Food and Drug Administration (FDA)-approved dried plasma for military and emergency-preparedness uses, as well as for civilian use in remote or austere settings. The Department of Defense (DoD) and Biomedical Advanced Research and Development Authority are sponsoring development of three dried plasma products, incorporating different technologic approaches and business models. At the same time, the DoD is sponsoring prospective, randomized clinical studies on the prehospital use of plasma. These efforts are part of a coordinated program to provide a dried plasma for military and civilian applications and to produce additional information on plasma use so that, by the time we have an FDA-approved dried plasma, we will better understand how to use it.
A recent large civilian randomized controlled trial on the use of tranexamic acid (TXA) for trauma reported important survival benefits. Subsequently, successful use of TXA for combat casualties in Afghanistan was also reported. As a result of these promising studies, there has been growing interest in the use of TXA for trauma. Potential adverse effects of TXA have also been reported. A US Department of Defense committee conducted a review and assessment of knowledge gaps and research requirements regarding the use of TXA for the treatment of casualties that have experienced traumatic hemorrhage. We present identified knowledge gaps and associated research priorities. We believe that important knowledge gaps exist and that a targeted, prioritized research effort will contribute to the refinement of practice guidelines over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.