Key performance indicators (KPIs) are widely used to monitor and control the production in industry. On an aggregated level, often represented as graphs or interrelated KPI systems, a comprehensive overview is given. However, missing or inaccurate sensor data and KPIs, as well inconsistencies in KPI based management are a major hurdle disturbing operations. To counter the impact of such missing KPIs, we propose a value optimization based approach to reconstruct the values of missing KPIs within a KPI system. While the approach shows successful reconstruction in the case study, the value optimization can be sped up through a random forest prediction of the initial optimization set. Thus, the inclusion of previous knowledge about the system behavior proves beneficial and superior to the pure optimization based approach, as validated by both randomized and simulation-based measurement data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.