Abstract. This paper presents results from numerical simulations of a configuration in which a tungsten heavy alloy SRP penetrates a thick RHA 4340 steel at 2.6 km/s using the 2006 version of the Lagrangian finite element code EPIC. Penetration experimental data show improved penetration efficiency by the segmented projectiles when compared to monolithic (single solid rod) projectiles. For SRP with an aspect ratio (L/D) = 1/8, a loss in penetration efficiency was seen upon successive segment impacts. The projectile configuration considered in this study was collinear impacts of eight successive discs which measured 2mm in thickness and 16mm in diameter. The EPIC simulations considered a range of parameters that influenced the Depth of Penetration (DOP) including element-particle conversion, spacing and number of segments, failure criteria, impact velocity, and mesh resolution. The EPIC results are also compared with open-literature DOP data from simulations using an Eulerian finite element code, AUTODYN for a similar configuration. In addition, the effects of back-flowing ejecta generated by the impact of first segment on the penetration processes of subsequent segments were studied in details. An alternate SRP design is proposed in this paper to alleviate the ejecta problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.