Two stators of a multistage centrifugal compressor with progressively smaller outer radii have been designed, built, and tested. The aim was to achieve a significant reduction in the outer diameter of the compressor stage without compromising performance. The reduction in size was achieved by reducing the diffusion ratio (outer radius/inner radius) of the vaneless diffuser in two steps. In the first step, the outer diameter of the entire stage was reduced by 8% compared with the baseline design. In the second stage, the outer diameter was reduced by 14%. The outer radius of the smallest design was limited by the impeller exit diameter, which was kept constant, as was the axial length of the stage. The large radius baseline design has been tested on a rotating rig in a 1.5 stage setup. This setup aimed at simulating the multistage behavior by applying a pseudostage upstream of the main stage. The pseudostage consisted of a set of nonrotating preswirl vanes in order to mimic an upstream impeller and was followed by a scaled version of the return channel of the main stage. The experimental database was then used to calibrate a 1D analysis code and 3D–computational fluid dynamics methods for the ensuing design and optimization part. By applying an extensive design-of-experiments, the endwalls as well as the vanes of the stator part were optimized for maximum efficiency and operation range. In order to preserve the multistage performance, the optimization was constrained by keeping the circumferentially averaged spanwise flow profiles at the exit of the smaller radius stages within close limits to the original design. The reduced radius designs were then tested in the same 1.5 stage setup as the baseline design. The results indicate that the reduction in size was feasible without compromising the efficiency and operation range of the stage.
A set of aeroacoustic optimization strategies for axial fans is presented. Their efficiency is demonstrated for small axial fans. Thereby, the generated noise could be reduced significantly while retaining or even improving the aerodynamic performance. In particular, we discuss the following two optimization strategies in detail: Firstly, we consider the design of winglets using a parametric model for genetic optimization. The resulting winglet geometry helps to control the tip vortex over a large range of operating points, thereby reducing the generated noise. In addition, the power consumption of the fan could be reduced. Various choices of geometrical parameter sets for optimization are evaluated. Secondly, we discuss the reduction of fan noise via contour optimized turbulators. For axial fans it is desirable to reduce sound emission across a broad operating range, not just for the design point. However, operation in off-design points may be accompanied by flow separation phenomena, which contribute predominantly to noise generation and reduce the aerodynamic performance of the fan. Turbulators can help to minimize these adverse effects. The advantages of various contoured turbulator geometries are discussed for off-design operating points. The optimization of the above mentioned strategies was driven by aeroacoustic measurements via physical tests as well as numerical analysis based on the Lattice-Boltzmann method. The merits of either method are discussed with respect to the two optimization strategies.
The noise emitted by axial fans plays an integral role in product design. When conventional design procedures are applied, the aeroacoustic properties are controlled via an extensive trial-and-error process. This involves building physical prototypes and performing acoustic measurements. In general, this procedure makes it difficult for a designer to gain an understanding of the functional relationship between the noise and geometrical parameters of the fan. Hence, it is difficult for a human designer to control the aeroacoustic properties of the fan. To reduce the complexity of this process, we propose an inverse design methodology driven by a genetic algorithm. It aims to find the fan geometry for a set of given objectives. These include, most notably, the sound pressure frequency spectrum, aerodynamic efficiency, and pressure head. Individual bands of the sound pressure frequency spectrum may be controlled implicitly as a function of certain geometric parameters of the fan. In keeping with inverse design theory, we represent the design of axial fans as a multi-objective multiparameter optimization problem. The individual geometric components of the fan (e.g., rotor blades, winglets, guide vanes, shroud, and diffusor) are represented by free-form surfaces. In particular, each blade of the fan is individually parameterized. Hence, the resulting fan is composed of geometrically different blades. This approach is useful when studying noise reduction. For the analysis of the flow field and associated objectives, we utilize a standard Reynolds averaged Navier–Stokes (RANS) solver. However, for the evaluation of the generated noise, a meshless lattice-Boltzmann solver is employed. The method is demonstrated for a small axial fan, for which tonal noise is reduced.
A novel sector test rig has been used to evaluate a new airfoil concept for multistage radial compressors. The test rig is supported by a blow-down facility where the operation conditions are adjusted by controlling mass flow, pressure and temperature. At inlet to the sector test rig itself a set of adjustable inlet guide vanes provide the test vanes with the correct inlet three-dimensional flow-field. The rig is equipped with instrumentation to allow a detailed description of the inlet and outlet conditions, as well as the blade pressure loading. This rig, using rapid prototyped vanes, allows design candidates to be screened quickly and is ideal for conducting an experimental investigation of a design space using a Design-of-Experiments approach. In this paper the rationale for the sector approach is described, the design of the test rig with 3D-CFD methods is outlined and a detailed validation of the rig is presented. For the vane in question detailed investigations of different operation points close to stall are reported, blade pressures and inlet and exit flow profiles are given. Where applicable, measurement data from the sector rig was compared to 3D-CFD calculations of the full annulus multistage configuration, to 3D-CFD calculations of the sector rig itself and to the test results from a 1.5-stage rotating test rig. The measurement data are compared to the CFD predictions and served as a calibration basis for the design tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.