The cheetah (Acinonyx jubatus) has been considered a paradigm for disease vulnerability due to loss of genetic diversity. This species monomorphism has been suspected to be the basis for their general poor health and dwindling populations in captivity. North American and South African captive populations have high prevalences of hepatic veno-occlusive disease, glomerulosclerosis, gastritis, and systemic amyloidosis, diseases that are rare in other species. Unusually severe inflammatory reactions to common infectious agents have also been documented in captive cheetahs. The current study compared disease prevalences in free-ranging Namibian cheetahs with those in two captive populations of similar ages. The occurrence of diseases in the free-ranging population was determined from 49 necropsies and 27 gastric biopsies obtained between 1986 and 2003 and compared with prevalences in 147 North American and 80 South African captive cheetahs. Except for two cheetahs, the free-ranging population was in robust health with only mild lesions present, in contrast with significantly higher prevalences in the captive populations. Despite widespread heavy Helicobacter colonization in wild cheetahs, only 3% of the free-ranging population had moderate to severe gastritis, in contrast with 64% of captive cheetahs. No severe inflammatory reactions to viral infections were detected in the free-ranging animals. Because free-ranging Namibian cheetahs are as genetically impoverished as captive cheetahs, these findings caution against attributing loss of fitness solely to genetic factors and attest to the fundamental importance of extrinsic factors in wildlife health.
To establish a skeletal muscle profile for elite sprinters, we obtained muscle biopsy samples from the vastus lateralis, gastrocnemius and soleus of African cheetahs (Acinonyx jubatus). Muscle ultrastructure was characterized by the fiber type composition and mitochondrial volume density of each sample. Maximum enzyme activity, myoglobin content and mixed fiber metabolite content were used to assess the major biochemical pathways. The results demonstrate a preponderance of fast-twitch fibers in the locomotor muscles of cheetahs; 83% of the total number of fibers examined in the vastus lateralis and nearly 61% of the gastrocnemius were comprised of fast-twitch fibers. The total mitochondrial volume density of the limb muscles ranged from 2.0 to 3.9% for two wild cheetahs. Enzyme activities reflected the sprinting capability of the cheetah. Maximum activities for pyruvate kinase and lactate dehydrogenase in the vastus lateralis were 1519.00 +/- 203.60 and 1929.25 +/- 482.35 mumol min-1.g wet wt-1, respectively, and indicated a high capacity for glycolysis. This study demonstrates that the locomotor muscles of cheetahs are poised for anaerobically based exercise. Fiber type composition, mitochondrial content and glycolytic enzyme capacities in the locomotor muscles of these sprinting cats are at the extreme range of values for other sprinters bred or trained for this activity including greyhounds, thoroughbred horses and elite human athletes.
Callitrichid hepatitis (CH) is a newly recognized, acute, fatal, epizootic disease of New World primates in the family Callitrichidae. Since 1980, 12 outbreaks of CH have occurred in US zoos, involving several callitrichid species including the endangered golden lion tamarin (Leontopithecus rosalia). CH was experimentally transmitted to common marmosets via a bacteria-free filtrate of liver from a naturally infected tamarin. All three inoculated marmosets developed an acute fatal disease with the characteristic clinical and histopathologic findings of CH. Human hepatotropic viruses that can infect the livers of callitrichids were not detected serologically in any of the experimentally infected marmosets. Enveloped viruslike particles 85-105 nm in diameter were observed in the rough endoplasmic reticulum and Golgi complex of hepatocytes from both naturally infected and experimentally inoculated animals. An immunoblot assay was developed using sera from tamarins exposed to natural outbreaks of CH and liver extracts from experimentally infected or control marmosets. A new CH-specific antigen was detected in the livers of naturally infected and experimentally inoculated marmosets but not controls. These results suggest that the etiologic agent of callitrichid hepatitis is a new primate hepatitis virus.
Livers from 54 snow leopards, 4 days to 23 years old, that had died in 23 US zoos, were evaluated histopathologically to determine if the hepatic fibrosis, which has been noted to be prevalent in this species, was due to chronic active hepatitis from hepadnaviral infection, Ito cell proliferation, or hemosiderosis. Forty-two of 54 snow leopards had subintimal vascular fibrosis with partial or total occlusion of central and sublobular veins (veno-occlusive disease) of unknown origin. All 21 leopards older than 5 years were affected. Four leopards had chronic active hepatitis, and 12 leopards had cholangiohepatitis; but these lesions were not connected anatomically to central and sublobular venous fibrosis. Hepatocellular and Kupffer cell siderosis and Ito cell proliferation were prevalent and often coexisted with perisinusoidal, central, and sublobular venous fibrosis; but fibrosis was present in leopards without siderosis or Ito cell proliferation. The pattern and prevalence of veno-occlusive disease in these leopards was similar to that reported in captive cheetah (Acinonyx jubatus), suggesting that a common extrinsic factor may cause the majority of hepatic disease in these large felid animals in captivity.
The National Zoological Park has maintained a breeding colony of Matschie's tree kangaroos (Dendrolagus matschiei) since 1975 with a documented history and continued prevalence of Mycobacterium avium complex (MAC) infections. No evidence of immunosuppressive retrovirus infections or loss of heterozygosity that may have led to an immune dysfunction in these animals was found. Isolates of MAC organisms from affected tree kangaroos and from their environment had no common restriction fragment DNA types. Cellular immune reactivity in apparently healthy tree kangaroos was 3- to 6-fold lower than in humans and other marsupial and eutherian mammals, as determined by lymphocyte proliferative assays. Thus, while MAC infections are typically opportunistic in humans and other mammals, tree kangaroos commonly develop primary progressive disease with MAC from random sources. Comparative information derived from this study should benefit both the endangered tree kangaroo and humans with immunosuppressive disorders that lead to mycobacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.