A series of highly luminescent dinuclear copper(I) complexes has been synthesized in good yields using a modular ligand system of easily accessible diphenylphosphinopyridine-type P^N ligands. Characterization of these complexes via X-ray crystallographic studies and elemental analysis revealed a dinuclear complex structure with a butterfly-shaped metal-halide core. The complexes feature emission covering the visible spectrum from blue to red together with high quantum yields up to 96%. Density functional theory calculations show that the HOMO consists mainly of orbitals of both the metal core and the bridging halides, while the LUMO resides dominantly on the heterocyclic part of the P^N ligands. Therefore, modification of the heterocyclic moiety of the bridging ligand allows for systematic tuning of the luminescence wavelength. By increasing the aromatic system of the N-heterocycle or through functionalization of the pyridyl moiety, complexes with emission maxima from 481 to 713 nm are obtained. For a representative compound, it is shown that the ambient-temperature emission can be assigned as a thermally activated delayed fluorescence, featuring an attractively short emission decay time of only 6.5 μs at ϕPL = 0.8. It is proposed to apply these compounds for singlet harvesting in OLEDs.
[reaction: see text] A series of aliphatic and aromatic carbonyl compounds has been transformed into the corresponding sulfamidated products by means of amine-catalyzed nitrene transfer of chloramine-T. Depending on the residues R, either alpha-sulfamidation in the case of aromatic aldehydes and acetone derivatives or direct sulfamidation at the carbonyl functionality of aliphatic aldehydes has been observed. Applying microwave conditions, good to excellent yields under significantly reduced reaction times could be obtained, thus providing a facile access to alpha,alpha-disubstituted amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.