Gait modifications are often proposed to reduce average loading rate (AVLR) during running. While many modifications may reduce AVLR, little work has investigated secondary gait changes. Thirty-two rearfoot runners [16M, 16F, 24.7 (3.3) years, 22.72 (3.01) kg/m , >16 km/week] ran at a self-selected speed (2.9 ± 0.3 m/s) on an instrumented treadmill, while 3D mechanics were calculated via real-time data acquisition. Real-time visual feedback was provided in a randomized order to cue a forefoot strike (FFS), a minimum 7.5% decrease in step length, or a minimum 15% reduction in AVLR. AVLR was reduced by FFS (mean difference = 26.4 BW/s; 95% CI = 20.1, 32.7; P < 0.001), shortened step length (8.4 BW/s; 95% CI = 2.9, 14.0; P = 0.004), and cues to reduce AVLR (14.9 BW/s; 95% CI = 10.2, 19.6; P < 0.001). FFS, shortened step length, and cues to reduce AVLR all reduced eccentric knee joint work per km [(-48.2 J/kg*m; 95% CI = -58.1, -38.3; P < 0.001), (-35.5 J/kg*m; 95% CI = -42.4, 28.6; P < 0.001), (-23.1 J/kg*m; 95% CI = -33.3, -12.9; P < 0.001)]. However, FFS and cues to reduce AVLR also increased eccentric ankle joint work per km [(54.49 J/kg*m; 95% CI = 45.3, 63.7; P < 0.001), (9.20 J/kg*m; 95% CI = 1.7, 16.7; P = 0.035)]. Potentially injurious secondary effects associated with FFS and cues to reduce AVLR may undermine their clinical utility. Alternatively, a shortened step length resulted in small reductions in AVLR, without any potentially injurious secondary effects.
The stress experienced by the tibia has contributions from the forces and moments acting on the tibia. We sought to quantify the influence of running grade on internal tibial forces and moments. Seventeen participants ran at 3.33 m/s on an instrumented treadmill at 0°, ±5°, and ±10° while motion data were captured. Ankle joint contact force was estimated from an anthropometrically-scaled musculoskeletal model using inverse dynamics-based static optimization. Internal tibial forces and moments were quantified at the distal 1/3rd of the tibia, by ensuring static equilibrium with all applied forces and moments. Downhill running conditions resulted in lower peak internal axial force (range of mean differences: -9 to -16%, p<0.001), lower peak internal anteroposterior force (-14 to -21%, p<0.001), and lower peak internal mediolateral force (-14 to -15%, p<0.001), compared to 0° and +5°. Furthermore, downhill conditions resulted in lower peak internal mediolateral moment (-11 to -21%, p<0.001), lower peak internal anteroposterior moment (-13 to -14%, p<0.001), and lower peak internal torsional moment (-9 to -21%, p<0.001), compared to 0°, +5°, and +10°. The +10° condition resulted in lower peak internal axial force (-7 to -9%, p<0.001) and lower peak internal mediolateral force (-9%, p=0.004), compared to 0° and +5°. These findings suggest that downhill running may be associated with lower tibial stresses than either level or uphill running.
Compared to level running (LR), different strategies might be implemented by runners to cope with specific challenges of graded running at different speeds. The changes in joint kinetics and kinematics associated with graded running have been investigated, but their interactions with speed are unknown. Nineteen participants ran on an instrumented treadmill at five grades (0°, ±5° and ± 10°) and three speeds (2.50, 3.33 and 4.17 m/s), while 3D motion and forces were recorded. Three speed × five‐grade repeated‐measures ANOVA was used to analyze kinetic and kinematic variables. A speed × grade interaction was observed for hip range of motion (ROM). Downhill running (DR) at fastest speed did not reduce ROM at the hip, compared to LR. Compared to LR, it was observed that the hip joint was responsible for a greater contribution of energy generation while running at the fastest speed at +10°. Speed × grade interactions were also observed for the energy absorption, peak moment, and peak power at the knee. Contrary to LR, running faster during UR did not require higher peak power at the knee. Finally, DR at the fastest speed did not increase peak negative power at the knee compared to LR. This study demonstrates that ankle, knee, and hip joint kinetics depend on speed and grade of running, while the effect of grade on joint kinematics was not substantially modulated by speed.
Background: Athletes, especially female athletes, experience high rates of tibial bone stress injuries (BSIs). Knowledge of tibial loads during walking and running is needed to understand injury mechanisms and design safe running progression programs. Purpose: To examine tibial loads as a function of gait speed in male and female runners. Study Design: Controlled laboratory study. Methods: Kinematic and kinetic data were collected on 40 recreational runners (20 female, 20 male) during 4 instrumented gait speed conditions on a treadmill (walk, preferred run, slow run, fast run). Musculoskeletal modeling, using participant-specific magnetic resonance imaging and motion data, was used to estimate tibial stress. Peak tibial stress and stress-time impulse were analyzed using 2-factor multivariate analyses of variance (speed*sex) and post hoc comparisons (α = .05). Bone geometry and tibial forces and moments were examined. Results: Peak compression was influenced by speed ( P < .001); increasing speed generally increased tibial compression in both sexes. Women displayed greater increases in peak tension ( P = .001) and shear ( P < .001) than men when transitioning from walking to running. Further, women displayed greater peak tibial stress overall ( P < .001). Compressive and tensile stress-time impulse varied by speed ( P < .001) and sex ( P = .006); impulse was lower during running than walking and greater in women. A shear stress-time impulse interaction ( P < .001) indicated that women displayed greater impulse relative to men when changing from a walk to a run. Compared with men, women displayed smaller tibiae ( P < .001) and disproportionately lower tibial forces ( P≤ .001-.035). Conclusion: Peak tibial stress increased with gait speed, with a 2-fold increase in running relative to walking. Women displayed greater tibial stress than men and greater increases in stress when shifting from walking to running. Sex differences appear to be the result of smaller bone geometry in women and tibial forces that were not proportionately lower, given the womens’ smaller stature and lower mass relative to men. Clinical Relevance: These results may inform interventions to regulate running-related training loads and highlight a need to increase bone strength in women. Lower relative bone strength in women may contribute to a sex bias in tibial BSIs, and female runners may benefit from a slower progression when initiating a running program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.