IntroductionHeme oxygenase 1 (HO-1) and HO-2 metabolize heme to biliverdin, free iron, and carbon monoxide (CO) (1, 2). HO-2 is constitutively expressed in most tissues, whereas HO-1 is inducible (1). Products of heme metabolism by HO possess biological activities that influence vascular function. Biliverdin and its metabolic product bilirubin are antioxidants (3). Free iron facilitates production of reactive oxygen species (3). CO stimulates soluble guanylate cyclase (4, 5) and calcium-activated potassium (K Ca ) channels (6) in vascular smooth muscle and inhibits expression of endothelin-1 and PDGF in endothelial cells (7).Arterial vessels express HO-1 and/or HO-2 (8-10). Interventions that alter the expression or activity of vascular HO bring about changes of vascular tone and/or reactivity. For example, inhibitors of HO produce constriction of pressurized rat gracilis muscle arterioles (10). On the other hand, heme elicits HO-dependent dilation of rat gracilis muscle arterioles (11), and conditions that induce vascular HO-1 reduce the responsiveness of the rat tail artery and aorta to constrictor agents (9, 12, 13). It would appear, then, that one or more products of heme metabolism by HO contribute to vasodilatory mechanisms (2, 9).The present study was designed to test the hypothesis that the reactivity of small arterial vessels to constrictor agonists is tonically inhibited by CO of vascular origin, via a mechanism that involves upregulation of K Ca channel activity in vascular smooth muscle. We conducted experiments in rat renal interlobar arteries (a) to quantify the generation of CO and determine whether it is HO-dependent, (b) to examine the effect of interventions that decrease the activity or expression of HO on vascular smooth muscle reactivity to constrictor agonists, and (c) to determine the involvement of K Ca channels in the action of CO on the reactivity of vascular smooth muscle to constrictor agonists. MethodsAnimals. All animal protocols were approved by the Institutional Animal Care and Use Committee of New York Medical College. Male Sprague-Dawley rats (250-300 g; Charles River, Wilmington, Massachusetts, USA) were anesthetized (pentobarbital sodium, 60 mg/kg, intraperitoneally) and the kidneys were removed and placed on a dish filled with ice-cold Krebs' buffer (composition in mmol/l: 118.5 NaCl, 4.7 KCl, 2.5 CaCl 2 , 1.2 KH 2 PO 4 , 1.2 MgSO 4 , 25.0 NaHCO 3 , and 11.1 dextrose). The kidneys were sectioned sagittally and the interlobar arteries were dissected out for use in studies on vascular contractility, recording of K + currents in vascular smooth muscle cells, and assessment of HO expression and CO production.Vascular contractility studies. Renal interlobar arteries with an internal diameter averaging 240 ± 4 µm were cut into ring segments 2 mm in length. Freshly prepared rings or rings pretreated as described below were mounted on 25 µm stainless steel wires in the chambers of a multivessel myograph (J.P. Trading, Aarhus, Rat renal interlobar arteries express heme oxygenase 2 (HO...
Nitrative stress has an important role in microvascular degeneration leading to ischemia in conditions such as diabetic retinopathy and retinopathy of prematurity. Thus far, mediators of nitrative stress have been poorly characterized. We recently described that trans-arachidonic acids are major products of NO(2)(*)-mediated isomerization of arachidonic acid within the cell membrane, but their biological relevance is unknown. Here we show that trans-arachidonic acids are generated in a model of retinal microangiopathy in vivo in a NO(*)-dependent manner. They induce a selective time- and concentration-dependent apoptosis of microvascular endothelial cells in vitro, and result in retinal microvascular degeneration ex vivo and in vivo. These effects are mediated by an upregulation of the antiangiogenic factor thrombospondin-1, independently of classical arachidonic acid metabolism. Our findings provide new insight into the molecular mechanisms of nitrative stress in microvascular injury and suggest new therapeutic avenues in the management of disorders involving nitrative stress, such as ischemic retinopathies and encephalopathies.
The cytochrome P-450 pathway is capable of metabolizing arachidonic acid to omega- and subterminal hydroxylase metabolites, 16-, 17-, 18-, 19-, and 20-hydroxyeicosatetraenoic acids (P-450 HETEs). We have quantitated, by gas chromatography-mass spectrometry (GC/MS), endogenous HETEs exiting the rabbit isolated perfused kidney elicited by hormonal stimulation. Kidneys were perfused with Krebs-Henseleit solution containing indomethacin (2.8 microM) to prevent further metabolism of HETEs by cyclooxygenase. Phenylephrine (2-3 microM) was added to the perfusate to raise perfusion pressure to approximately 80 mmHg. Angiotensin II (ANG II), arginine vasopressin (AVP), and bradykinin (BK) were injected into the renal artery and perfusates collected throughout the vasoactive response. After addition of an internal standard, deuterated 19-HETE, perfusates were extracted and purified and P-450 HETEs were derivatized for GC/MS analysis. Under basal conditions, 16-, 18-, 19-, and 20-HETEs were released (range: 50-270 pg/ml), 19-HETE being the highest and fivefold greater than 16-HETE, the lowest. Injection of 50 ng ANG II increased by two- to sixfold P-450 HETE release associated with an increase of 40 +/- 11 mmHg in perfusion pressure. An equipressor dose of AVP (50 ng) did not release P-450 HETEs nor did a 5-micrograms dose of the vasodilator peptide BK, which decreased perfusion pressure by 22 +/- 6 mmHg. Authentic 19- and 20-HETE isomers resulted in dose-dependent dilation, as did 18(R)- and 16(R)-HETEs, whereas their enantiomers and 17-HETE isomers were without effect on perfusion pressure. The vasodilator effects of 18(R)- and 16(R)-HETEs, like 20- and 19-HETEs, were inhibited by indomethacin. Furthermore, P-450 HETEs exhibited both regio- and stereoselective inhibition of proximal tubule adenosine triphosphatase (ATPase) activity. The (S) enantiomers of 16- and 17-HETE potently inhibited activity, whereas their (R) isomers and other P-450 HETEs had negligible effects on ATPase activity. The quantity of HETEs released from the kidney, either under basal conditions or when stimulated by ANG II, and their biological profile suggest that subterminal HETEs may participate in renal mechanisms affecting vasomotion and tubular transport.
Oxygen free radicals oxidize arachidonic acid to a complex mixture of metabolites termed isoeicosanoids that share structural similarity to enzymatically derived eicosanoids. However, little is known about oxidations of arachidonic acid mediated by reactive radical nitrogen oxides. We have studied the reaction of arachidonic acid with NO2, a free radical generated by nitric oxide and nitrite oxidations. A major group of products appeared to be a mixture of arachidonic acid isomers having one trans-bond and three cis-double bonds. We have termed these new products trans-arachidonic acids. These isomers were chromatographically distinct from arachidonic acid and produced mass spectra that were nearly identical with mass spectra of arachidonic acid. The lack of ultraviolet absorbance above 205 nm and the similarity of mass spectra of dimethyloxazoline derivatives suggested that the trans-bond was not conjugated with any of the cis-bonds, and the C=C bonds were located at carbons 5, 8, 11, and 14. Further identification was based on comparison of chromatographic properties with synthetic standards and revealed that NO2 generated 14-trans-eicosatetraenoic acid and a mixture containing 11-trans-, 8-trans-, and 5-trans-eicosatetraenoic acids. Exposure of human platelets to submicromolar levels of NO2 resulted in a dose-dependent formation of 14-trans-eicosatetraenoic acid and other isomers within platelet glycerophospholipids. Using a sensitive isotopic dilution assay we detected trans-arachidonic acids in human plasma (50.3 +/- 10 ng/ml) and urine (122 +/- 50 pg/ml). We proposed a mechanism of arachidonic acid isomerization that involves a reversible attachment of NO2 to a double bond with formation of a nitroarachidonyl radical. Thus, free radical processes mediated by NO2 lead to generation of trans-arachidonic acid isomers, including biologically active 14-trans-eicosatetraenoic acid, within membrane phospholipids from which they can be released and excreted into urine.
In the rat isolated perfused kidney, 5,8,11,14-eicosatetraynoic acid, an inhibitor of all pathways of arachidonic acid (AA) metabolism, diminished endothelin-1 (ET-1)- and angiotensin II (ANG II)-induced renal vasoconstriction by approximately 60-70%. We then examined the individual contribution of each oxygenase, cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 (CYP) to the vasoconstrictor effects of ET-1 and ANG II. Inhibition of COX with indomethacin reduced by 30-40% the vasoconstrictor responses to ET-1 and ANG II. Inhibition of 12-LOX with baicalein and 5- and 12-LOX with 5,8,11-eicosatriynoic acid attenuated ANG II-induced renal vasoconstriction by approximately 40-60% but did not affect responses to ET-1. In contrast, 12,12-dibromododec-11-enoic acid (DBDD), an inhibitor of the CYP omega/omega 1-hydroxylase pathway, diminished ET-1-induced renal vasoconstriction by 30-40%, an effect reproduced by depletion of CYP enzymes with CoCl2. Neither DBDD nor CoCl2 affected renal vasoconstriction elicited by ANG II. ET-1 increased efflux of 19- and 20-hydroxyeicosatetraenoic acid, an effect reduced by DBDD. Thus products of the COX and CYP pathways contribute to the renal vasoconstrictor response to ET-1, whereas COX- and LOX-derived eicosanoids contribute to the response to ANG II, accounting for > or = 80% of the vasoactivity of the peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.