52% Yes, a signiicant crisis 3% No, there is no crisis 7% Don't know 38% Yes, a slight crisis 38% Yes, a slight crisis 1,576 RESEARCHERS SURVEYED M ore than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments. Those are some of the telling figures that emerged from Nature's survey of 1,576 researchers who took a brief online questionnaire on reproducibility in research. The data reveal sometimes-contradictory attitudes towards reproduc-ibility. Although 52% of those surveyed agree that there is a significant 'crisis' of reproducibility, less than 31% think that failure to reproduce published results means that the result is probably wrong, and most say that they still trust the published literature. Data on how much of the scientific literature is reproducible are rare and generally bleak. The best-known analyses, from psychology 1 and cancer biology 2 , found rates of around 40% and 10%, respectively. Our survey respondents were more optimistic: 73% said that they think that at least half of the papers in their field can be trusted, with physicists and chemists generally showing the most confidence. The results capture a confusing snapshot of attitudes around these issues, says Arturo Casadevall, a microbiologist at the Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland. "At the current time there is no consensus on what reproducibility is or should be. " But just recognizing that is a step forward, he says. "The next step may be identifying what is the problem and to get a consensus. "
In order to take advantage of the potential offered by the medium of virtual reality (VR), it will be essential to develop an understanding of how to maximize the desirable experience of “presence” in a virtual space (“being there”), and how to minimize the undesirable feeling of “cybersickness” (a constellation of discomfort symptoms experienced in VR). Although there have been frequent reports of a possible link between the observer’s sense of presence and the experience of bodily discomfort in VR, the amount of literature that discusses the nature of the relationship is limited. Recent research has underlined the possibility that these variables have shared causes, and that both factors may be manipulated with a single approach. This review paper summarizes the concepts of presence and cybersickness and highlights the strengths and gaps in our understanding about their relationship. We review studies that have measured the association between presence and cybersickness, and conclude that the balance of evidence favors a negative relationship between the two factors which is driven principally by sensory integration processes. We also discuss how system immersiveness might play a role in modulating both presence and cybersickness. However, we identify a serious absence of high-powered studies that aim to reveal the nature of this relationship. Based on this evidence we propose recommendations for future studies investigating presence, cybersickness, and other related factors.
Gilbert et al. conclude that evidence from the Open Science Collaboration's Reproducibility Project: Psychology indicates high reproducibility, given the study methodology. Their very optimistic assessment is limited by statistical misconceptions and by causal inferences from selectively interpreted, correlational data. Using the Reproducibility Project: Psychology data, both optimistic and pessimistic conclusions about reproducibility are possible, and neither are yet warranted.A cross multiple indicators of reproducibility, the Open Science Collaboration (1) (OSC2015) observed that the original result was replicated in~40 of 100 studies sampled from three journals. Gilbert et al. (2) conclude that the reproducibility rate is, in fact, as high as could be expected, given the study methodology. We agree with them that both methodological differences between original and replication studies and statistical power affect reproducibility, but their very optimistic assessment is based on statistical misconceptions and selective interpretation of correlational data.Gilbert et al. focused on a variation of one of OSC2015's five measures of reproducibility: how often the confidence interval (CI) of the original study contains the effect size estimate of the replication study. They misstated that the expected replication rate assuming only sampling error is 95%, which is true only if both studies estimate the same population effect size and the replication has infinite sample size (3, 4). OSC2015 replications did not have infinite sample size. In fact, the expected replication rate was 78.5% using OSC2015's CI measure (see OSC2015's supplementary information, pp. 56 and 76; https://osf.io/k9rnd). By this measure, the actual replication rate was only 47.4%, suggesting the influence of factors other than sampling error alone.Within another large replication study, "Many Labs" (5) (ML2014), Gilbert et al. found that 65.5% of ML2014 studies would be within the CIs of other ML2014 studies of the same phenomenon and concluded that this reflects the maximum reproducibility rate for OSC2015. Their analysis using ML2014 is misleading and does not apply to estimating reproducibility with OSC2015's data for a number of reasons.First, Gilbert et al.'s estimates are based on pairwise comparisons between all of the replications within ML2014. As such, for roughly half of their failures to replicate, "replications" had larger effect sizes than "original studies," whereas just 5% of OSC2015 replications had replication CIs exceeding the original study effect sizes.Second, Gilbert et al. apply the by-site variability in ML2014 to OSC2015's findings, thereby arriving at higher estimates of reproducibility. However, ML2014's primary finding was that by-site variability was highest for the largest (replicable) effects and lowest for the smallest (nonreplicable) effects. If ML2014's primary finding is generalizable, then Gilbert et al.'s analysis may leverage by-site variability in ML2014's larger effects to exaggerate the effect of by-sit...
Perceptual binding of multisensory events occurs within a limited time span known as the temporal binding window. Failure to correctly identify whether multisensory events occur simultaneously, what their temporal order is, or whether they should be causally bound can lead to inaccurate representations of the physical world, poor decision-making, and dangerous behavior. It has been shown that the ability to discriminate simultaneity, temporal order, and causal relationships among stimuli can become increasingly difficult as we age. In the present study, we assessed the relationship between these three attributes of temporally processing multisensory information in both younger and older adults. Performance on three tasks (temporal order judgment: TOJ, simultaneity judgment: SJ, and stream/bounce illusion) was compared using a large sample within-subjects design consisting of younger and older adults to determine aging effects as well as relationships between the three tasks. Older adults had more difficulty (larger temporal binding window) discriminating temporal order and perceived collision than younger adults. Simultaneity judgments in younger and older adults were indistinguishable. Positive correlations between TOJ and SJ as well as SJ and stream/bounce tasks were found in younger adults, which identify common (SJ) and distinct (TOJ, stream/bounce) neural mechanisms that sub-serve temporal processing of audiovisual information that is lost in older adults. We conclude that older adults have an extended temporal binding window for TOJ and stream/bounce tasks, but the temporal binding window in SJ is preserved, suggesting that age-related changes in multisensory integration are task specific and not a general trait of aging.
A conflict between an egocentric and an external reference frame can be highlighted by examining the marked deficit observed with tactile temporal order judgments (TOJ) when the hands are crossed. The anecdotally-reported large individual differences in the magnitude of this crossed-hands deficit were explored here by testing a large group of participants (48; 24 female). Given that females have been shown to be more visually dependent than males in the potentially related rod-and-frame test (RFT), we hypothesized that females would show a larger influence of the external reference frame (i.e., a larger crossed-hands deficit). As predicted, female participants produced larger tactile TOJ deficits compared to our male participants. We also administered the RFT in these participants with hands crossed and uncrossed. Crossing the hands increased the effect of the frame in the RFT, more so for females than males, further highlighting the potential difference in the way that each sex accommodates reference frame conflicts. Finally, examining the relation between the two tasks revealed a significant correlation, with larger frame effects associated with larger crossed-hands TOJ deficits, but this only held for males. We speculate that sex-specific differences in multisensory processing and spatial ability may explain why females are less able to disambiguate a crossed-hands posture than are males.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.