Herbicides are the foundation of weed control in commercial crop-production systems. However, herbicide-resistant (HR) weed populations are evolving rapidly as a natural response to selection pressure imposed by modern agricultural management activities. Mitigating the evolution of herbicide resistance depends on reducing selection through diversification of weed control techniques, minimizing the spread of resistance genes and genotypes via pollen or propagule dispersal, and eliminating additions of weed seed to the soil seedbank. Effective deployment of such a multifaceted approach will require shifting from the current concept of basing weed management on single-year economic thresholds.
A model and a proposed method for testing herbicide interactions were modified from an analysis of variance (ANOVA) model for a 2 by 2 factorial experiment. Statistical tests for either synergism, antagonism, or additivity of herbicide combinations were developed through transforming growth data to logarithms followed by significance tests of 2 by 2 contrasts of the form μii- μi0- μ0i+ μ00with respect to the log-transformed data. Using actual experimental data, heterogeneity of variance was less severe on the log scale compared to the original measurement scale. An expedient SAS(R)program for obtaining the desired significance tests was developed.
Cellulose biosynthesis is a common feature of land plants. Therefore, cellulose biosynthesis inhibitors (CBIs) have a potentially broad-acting herbicidal mode of action and are also useful tools in decoding fundamental aspects of cellulose biosynthesis. Here, we characterize the herbicide indaziflam as a CBI and provide insight into its inhibitory mechanism. Indaziflam-treated seedlings exhibited the CBI-like symptomologies of radial swelling and ectopic lignification. Furthermore, indaziflam inhibited the production of cellulose within ,1 h of treatment and in a dose-dependent manner. Unlike the CBI isoxaben, indaziflam had strong CBI activity in both a monocotylonous plant (Poa annua) and a dicotyledonous plant (Arabidopsis [Arabidopsis thaliana]). Arabidopsis mutants resistant to known CBIs isoxaben or quinoxyphen were not cross resistant to indaziflam, suggesting a different molecular target for indaziflam. To explore this further, we monitored the distribution and mobility of fluorescently labeled CELLULOSE SYNTHASE A (CESA) proteins in living cells of Arabidopsis during indaziflam exposure. Indaziflam caused a reduction in the velocity of YELLOW FLUORESCENT PROTEIN:CESA6 particles at the plasma membrane focal plane compared with controls. Microtubule morphology and motility were not altered after indaziflam treatment. In the hypocotyl expansion zone, indaziflam caused an atypical increase in the density of plasma membrane-localized CESA particles. Interestingly, this was accompanied by a cellulose synthase interacting1-independent reduction in the normal coincidence rate between microtubules and CESA particles. As a CBI, for which there is little evidence of evolved weed resistance, indaziflam represents an important addition to the action mechanisms available for weed management.
Greenhouse studies were conducted to determine the basis for reduced johnsongrass control when glyphosate was applied in mixtures with 2,4-D or dicamba. Glyphosate was applied to johnsongrass at 0.28, 0.56, 0.84, and 1.12 kg/ha alone and in combination with 2,4-D or dicamba at 0.14, 0.28, 0.14, or 0.56 kg/ha. Johnsongrass shoot and root fresh weights measured 4 weeks after treatment were higher when glyphosate was applied with 2,4-D (0.28 kg/ha glyphosate) or dicamba (0.28 kg/ha or 0.56 kg/ha glyphosate) compared to glyphosate applied alone at these rates. The antagonism of johnsongrass control was not observed with combinations of some of the higher glyphosate rates with 2,4-D (0.56 or 0.84 kg/ha glyphosate) or dicamba (0.84 or 1.12 kg/ha glyphosate). The reduction of glyphosate activity on johnsongrass occurred when any of four forms of 2,4-D or two forms of dicamba were added to the glyphosate spray mixture. Glyphosate uptake into johnsongrass leaves and subsequent translocation to the roots was reduced by the presence of 2,4-D or dicamba. The reduced glyphosate uptake and translocation could account for the decreased toxicity of glyphosate to johnsongrass when applied with 2,4-D or dicamba.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.