Schaefer proved in 1978 that the Boolean constraint satisfaction problem for a given constraint language is either in P or is NP-complete, and identified all tractable cases. Schaefer's dichotomy theorem actually shows that there are at most two constraint satisfaction problems, up to polynomial-time isomorphism (and these isomorphism types are distinct if and only if P = NP). We show that if one considers AC 0 isomorphisms, then there are exactly six isomorphism types (assuming that the complexity classes NP, P, L, NL, and L are all distinct). A similar classification holds for quantified constraint satisfaction problems.
Abstract. In a seminal paper from 1985, Sistla and Clarke showed that satisfiability for Linear Temporal Logic (LTL) is either NP-complete or PSPACE-complete, depending on the set of temporal operators used. If, in contrast, the set of propositional operators is restricted, the complexity may decrease. This paper undertakes a systematic study of satisfiability for LTL formulae over restricted sets of propositional and temporal operators. Since every propositional operator corresponds to a Boolean function, there exist infinitely many propositional operators. In order to systematically cover all possible sets of them, we use Post's lattice. With its help, we determine the computational complexity of LTL satisfiability for all combinations of temporal operators and all but two classes of propositional functions. Each of these infinitely many problems is shown to be either PSPACE-complete, NP-complete, or in P.
ACM
In a seminal paper from 1985, Sistla and Clarke showed that the model-checking problem for Linear Temporal Logic (LTL) is either NP-complete or PSPACE-complete, depending on the set of temporal operators used. If, in contrast, the set of propositional operators is restricted, the complexity may decrease. This paper systematically studies the model-checking problem for LTL formulae over restricted sets of propositional and temporal operators. For almost all combinations of temporal and propositional operators, we determine whether the model-checking problem is tractable (in P) or intractable (NP-hard). We then focus on the tractable cases, showing that they all are NL-complete or even logspace solvable. This leads to a surprising gap in complexity between tractable and intractable cases. It is worth noting that our analysis covers an infinite set of problems, since there are infinitely many sets of propositional operators.
Abstract. In this paper we will look at restricted versions of the evaluation problem, the model checking problem, the equivalence problem, and the counting problem for quantified propositional formulas, both with and without bound on the number of quantifier alternations. The restrictions are such that we consider formulas in conjunctive normal-form with restricted types of clauses (e.g., positive, Horn, linear, etc.). For each of these algorithmic goals we will obtain full complexity classifications, exhibiting on the one hand severe syntactic restrictions of the original problems that are still computationally hard, and on the other hand non-trivial subcases that admit efficient solution algorithms. Generalizing these results to non Boolean domains, we obtain a number of hardnes results for quantified constraints over arbitrary finite universes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.