Purpose The purpose of this study was to validate a fully automatic treatment planning system for conventional radiotherapy of cervical cancer. This system was developed to mitigate staff shortages in low-resource clinics. Methods In collaboration with hospitals in South Africa and the United States, we have developed the Radiation Planning Assistant (RPA), which includes algorithms for automating every step of planning: delineating the body contour, detecting the marked isocenter, designing the treatment-beam apertures, and optimizing the beam weights to minimize dose heterogeneity. First, we validated the RPA retrospectively on 150 planning computed tomography (CT) scans. We then tested it remotely on 14 planning CT scans at two South African hospitals. Finally, automatically planned treatment beams were clinically deployed at our institution. Results The automatically and manually delineated body contours agreed well (median mean surface distance, 0.6 mm; range, 0.4 to 1.9 mm). The automatically and manually detected marked isocenters agreed well (mean difference, 1.1 mm; range, 0.1 to 2.9 mm). In validating the automatically designed beam apertures, two physicians, one from our institution and one from a South African partner institution, rated 91% and 88% of plans acceptable for treatment, respectively. The use of automatically optimized beam weights reduced the maximum dose significantly (median, −1.9%; P < .001). Of the 14 plans from South Africa, 100% were rated clinically acceptable. Automatically planned treatment beams have been used for 24 patients with cervical cancer by physicians at our institution, with edits as needed, and its use is ongoing. Conclusion We found that fully automatic treatment planning is effective for cervical cancer radiotherapy and may provide a reliable option for low-resource clinics. Prospective studies are ongoing in the United States and are planned with partner clinics.
The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff.
PurposeWe assessed automated contouring of normal structures for patients with head-and-neck cancer (HNC) using a multiatlas deformable-image-registration algorithm to better provide a fully automated radiation treatment planning solution for low- and middle-income countries, provide quantitative analysis, and determine acceptability worldwide.MethodsAutocontours of eight normal structures (brain, brainstem, cochleae, eyes, lungs, mandible, parotid glands, and spinal cord) from 128 patients with HNC were retrospectively scored by a dedicated HNC radiation oncologist. Contours from a 10-patient subset were evaluated by five additional radiation oncologists from international partner institutions, and interphysician variability was assessed. Quantitative agreement of autocontours with independently physician-drawn structures was assessed using the Dice similarity coefficient and mean surface and Hausdorff distances. Automated contouring was then implemented clinically and has been used for 166 patients, and contours were quantitatively compared with the physician-edited autocontours using the same metrics.ResultsRetrospectively, 87% of normal structure contours were rated as acceptable for use in dose-volume-histogram–based planning without edit. Upon clinical implementation, 50% of contours were not edited for use in treatment planning. The mean (± standard deviation) Dice similarity coefficient of autocontours compared with physician-edited autocontours for parotid glands (0.92 ± 0.10), brainstem (0.95 ± 0.09), and spinal cord (0.92 ± 0.12) indicate that only minor edits were performed. The average mean surface and Hausdorff distances for all structures were less than 0.15 mm and 1.8 mm, respectively.ConclusionAutomated contouring of normal structures generates reliable contours that require only minimal editing, as judged by retrospective ratings from multiple international centers and clinical integration. Autocontours are acceptable for treatment planning with no or, at most, minor edits, suggesting that automated contouring is feasible for clinical use and in the ongoing development of automated radiation treatment planning algorithms.
In the absence of more clinical data demonstrating the superiority of IMRT in the treatment of nasopharyngeal carcinoma, 2D conventional RT seems to be a reasonable treatment option, especially in limited resource settings. © 2015 Wiley Periodicals, Inc. Head Neck 38: E2130-E2142, 2016.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.