An anechoic wind tunnel dedicated to fan self-noise studies has been designed and constructed at the von Karman Institute The multi-chamber, mass flow driven design allows for all fan performance characteristics, aerodynamic quantities (e.g., wake turbulence measurements), and acoustic properties to be assessed in the same facility with the same conditions. The acoustic chamber performance is assessed using the optimum reference method and found to be within the ISO 3745 standards down to 150 Hz for pure tone and broadband source mechanisms. The additional influence of installation effects of an aerodynamic inlet was found to create a scattered sound field only near the source location, while still providing good anechoic results at more distant sound pressure measurement positions. It was found to have inflow properties, span-wise uniformity, and low turbulence intensity, consistent with those desired for fan self-noise studies.
The combination of the high-order accurate spectral difference discretization on unstructured grids with subgrid-scale modelling is investigated for large eddy simulation of a muffler at Re = 4.64 · 10 4 and low Mach number. The subgrid-scale stress tensor is modelled by the wall-adapting local eddy-viscosity model with a cut-off length which is a decreasing function of the order of accuracy of the scheme. Numerical results indicate that although the highorder solver without subgrid-scale modelling is already able to capture well the features of the flow, the coupling with the wall-adapting local eddy-viscosity model improves the quality of the solution.
The effect of turbulent approach flow on the radiated sound from a circular cylinder was studied experimentally. The approach flow turbulence was provided by a single stream shear layer produced by an open jet anechoic tunnel facility. An instrumented cylinder was used to measure steady and unsteady surface pressure. The sound radiated from the cylinder placed in both an irrotational approach flow and the highly turbulent approach flow of the shear-layer was measured and compared. The cylinders located within the shear layer produced a less tonal sound with a higher broadband amplitude when compared to that of the free-stream approach flow. Secondly, the radiated sound from cylinders of different diameters was investigated to assess the effect of the ratio of cylinder diameter to approach flow length scale. It was found that as this ratio decreased, the broadband sound levels decreased as well. A simple theoretical model was then used to provide a prediction of the radiated sound for the cylinder within the shear layer. The theoretical model used statistics of the velocity field of the approach shear layer and the radiated sound spectrum the cylinder placed in a free stream. It was found that this method provided a similar spectral shape to the measured radiated sound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.