-Cloud computing offers the potential to dramatically reduce the cost of software services through the commoditization of information technology assets and ondemand usage patterns. However, the complexity of determining resource provision policies for applications in such complex environments introduces significant inefficiencies and has driven the emergence of a new class of infrastructure called Platform-as-a-Service (PaaS). In this paper, we present a novel PaaS architecture being developed in the EU IST IRMOS project targeting real-time Quality of Service (QoS) guarantees for online interactive multimedia applications. The architecture considers the full service lifecycle including service engineering, service level agreement design, provisioning and monitoring. QoS parameters at both application and infrastructure levels are given specific attention as the basis for provisioning policies in the context of temporal constraints. The generic applicability of the architecture is being verified and validated through implemented scenarios from three important application sectors (film post-production, virtual augmented reality for engineering design, collaborative e-Learning in virtual worlds).
A key task of emergency departments is to promptly identify patients who require hospital admission. Early identification ensures patient safety and aids organisational planning. Supervised machine learning algorithms can use data describing historical episodes to make ahead-of-time predictions of clinical outcomes. Despite this, clinical settings are dynamic environments and the underlying data distributions characterising episodes can change with time (data drift), and so can the relationship between episode characteristics and associated clinical outcomes (concept drift). Practically this means deployed algorithms must be monitored to ensure their safety. We demonstrate how explainable machine learning can be used to monitor data drift, using the COVID-19 pandemic as a severe example. We present a machine learning classifier trained using (pre-COVID-19) data, to identify patients at high risk of admission during an emergency department attendance. We then evaluate our model’s performance on attendances occurring pre-pandemic (AUROC of 0.856 with 95%CI [0.852, 0.859]) and during the COVID-19 pandemic (AUROC of 0.826 with 95%CI [0.814, 0.837]). We demonstrate two benefits of explainable machine learning (SHAP) for models deployed in healthcare settings: (1) By tracking the variation in a feature’s SHAP value relative to its global importance, a complimentary measure of data drift is found which highlights the need to retrain a predictive model. (2) By observing the relative changes in feature importance emergent health risks can be identified.
Abstract-In this paper we focus on how Quality of Service guarantees are provided to virtualised applications in the Cloud Computing infrastructure that is being developed in the context of the IRMOS 1 European Project. Provisioning of proper timeliness guarantees to distributed real-time applications involves the careful use of real-time scheduling mechanisms at the virtual-machine hypervisor level, of QoS-aware networking protocols and of proper design methodologies and tools for stochastic modelling of the application. The paper focuses on how we applied these techniques to a case-study involving a real eLearning mobile content delivery application that has been integrated into the IRMOS platform and its achieved performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.