A blind patch-clamp technique for in vivo whole-cell recordings in the intact brain is described. Recordings were obtained from various neuronal cell types located 100-5,000 microm from the cortical surface. Access resistance of recordings was as low as 10 M Omega but increased with recording depth and animal age. Recordings were remarkably stable and it was therefore possible to obtain whole-cell recordings in awake, head-fixed animals. The whole-cell configuration permitted rapid dialysis of cells with a calcium buffer. In most neurons very little ongoing action potential (AP) activity was observed and the spontaneous firing rates were up to 50-fold less than what has been reported by extracellular unit recordings. AP firing in the brain might therefore be far sparser than previously thought.
Sensory maps in neocortex are adaptively altered to reflect recent experience and learning. In somatosensory cortex, distinct patterns of sensory use or disuse elicit multiple, functionally distinct forms of map plasticity. Diverse approaches-genetics, synaptic and in vivo physiology, optical imaging, and ultrastructural analysis-suggest a distributed model in which plasticity occurs at multiple sites in the cortical circuit with multiple cellular/synaptic mechanisms and multiple likely learning rules for plasticity. This view contrasts with the classical model in which the map plasticity reflects a single Hebbian process acting at a small set of cortical synapses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.