Background:The neutron β-decay asymmetry parameter A 0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A 0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ ≡ g A /g V , which under assumption of the conserved vector current hypothesis (g V = 1) determines g A . Precise values for g A are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β-decay angular correlation performed with UCN. This article reports the most precise result for A 0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A 0 .
Abstract. This paper presents a systematic review which explores the nature of assistive technologies currently being designed, developed and evaluated for dementia sufferers and their carers. A search through four large databases, followed by filtering by relevance, led to the identification and subsequent review of papers. Our review revealed that the majority of research in this area focuses on the support of day-to-day living activities, safety monitoring, memory aids and preventing social isolation. We conclude that the majority of AT currently available support day-to-day living activities, safety monitoring and assisting healthcare. However these devices merely address the 'ease of living' rather than focusing on 'quality of life.' Although there are some devices which address social symptoms of Dementia, few address behavioural issues such as aggression and virtually none are available to support recreational activities. After discussing the implications of these findings, we finally reflect on general design issues for assistive technologies in this domain that became apparent during the review.
Ground-state two-proton (2p) radioactivity is a decay mode found in isotopes of elements with even atomic numbers located beyond the two-proton drip line. So far, this exotic process has been experimentally observed in a few light- and medium-mass nuclides with Z≤30. In this study, using state-of-the-art nuclear density functional theory, we globally analyze 2p radioactivity and for the first time identify 2p-decay candidates in elements heavier than strontium. We predict a few cases where the competition between 2p emission and α decay may be observed. In nuclei above lead, the α-decay mode is found to be dominating and no measurable candidates for the 2p radioactivity are expected.
It has been proposed recently that a previously unobserved neutron decay branch to a dark matter particle (χ ) could account for the discrepancy in the neutron lifetime observed in experiments that use two different measurement techniques. One of the possible final states discussed includes a single χ along with an e + e − pair. We use data from the UCNA (Ultracold Neutron Asymmetry) experiment to set limits on this decay channel. Coincident electron-like events are detected with ∼4π acceptance using a pair of detectors that observe a volume of stored ultracold neutrons. The summed kinetic energy (E e + e − ) from such events is used to set limits, as a function of the χ mass, on the branching fraction for this decay channel. For χ masses consistent with resolving the neutron lifetime discrepancy, we exclude this as the dominant dark matter decay channel at 5σ level for 100 < E e + e − < 644 keV. If the χ + e + e − final state is not the only one, we set limits on its branching fraction of <10 −4 for the above E e + e − range at >90% confidence level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.