In this Letter we omitted to cite a paper 1 that also used recently developed thermodynamic models 2 to predict the melting process in Archaean metabasaltic rocks. Importantly, the average enriched Archaean tholeiite used by ref. 1 as a proposed source rock 3 for tonalite-trondhjemite-granodiorite rocks has a magnesium number (Mg#) of 57, significantly higher than the average value for the CF-2 basalts (with Mg# of 35) 4. This difference has profound implications for the results of these studies. We regret not citing ref. 1 to emphasize the clear distinction between their findings and those of our study. The original Letter has not been corrected.
Southwest Japan is divided into Outer and Inner Zones by the Median Tectonic Line (MTL), a major transcurrent fault. The Outer Zone is composed of the Sambagawa (high-pressure intermediate or high P/T type metamorphism), Chichibu and Shimanto Belts. In the Inner Zone, the Ryoke Belt (andalusitesillimanite or low P/T type metamorphism) was developed mainly within a Jurassic accretionary complex. This spatial relationship between high P/T type and low P/T type metamorphic belts led Miyashiro to the idea that metamorphic belts were developed as 'paired' systems. Textural relationships and petrogenetically significant mineral assemblages in pelites from the Ryoke Belt imply peak P-T conditions of #5 kbar and up to 850°C in migmatitic garnet-cordierite rocks from the highest-grade metamorphic zone. It is likely that the thermal anomaly responsible for metamorphism of the Ryoke Belt was related to a segment of the Farallon-Izanagi Ridge as it subducted under the eastern margin of the Asian continent during the Cretaceous. The sequence of mineral assemblages developed in pelites implies a metamorphic field gradient with shallow dP/dT slope, inferred to have been generated by a nested set of hairpin-like 'clockwise' P-T paths. These P-T paths are characterized by limited prograde thickening, minor decompression at peak-T , and near-isobaric cooling, features that may be typical of P-T paths in low P/T type metamorphic belts caused by ridge subduction. A ridge subduction model for the Ryoke Belt implies that juxtaposition of the high-P/T metamorphic rocks of the Sambagawa Belt against it was a result of terrane amalgamation. Belt-parallel ductile stretching, recorded as syn-metamorphic, predominantly constrictional strain in both Ryoke and Sambagawa Belt rocks, and substantial sinistral displacement on the MTL are consistent with left-lateral oblique convergence. Diachroneity in fast cooling of the Ryoke Belt is implied by extant thermochronological data, and is inferred to relate to progressive SW to NE docking of the Sambagawa Belt. Thus, an alternative interpretation of 'paired' metamorphic belts in Japan is that they represent laterally contemporaneous terranes, rather than outboard and inboard components of a trench/arc 'paired' system. Amalgamation of laterally contemporaneous terranes during large translations of forearcs along continental margins may explain other examples of 'paired' metamorphic belts in the geological record.
Melt extraction is a process with a length scale that spans many orders of magnitude. Studies of residual migmatites and granulites suggest that melt has migrated from grain boundaries to networks of leucosome-filled structures to steeply inclined cylindrical or tabular granites inferred to have infilled ascent conduits. For example, in anatectic rocks from southern Brittany, France, during decompression-induced biotite-breakdown melting, melt is inferred to have been expressed from foliation-parallel structures analogous to compaction bands to dilation and shear bands, based on location of residual leucosome, and from this network of structures to ascent conduits, preserved as dykes of granite. The leucosome-filled deformation band network is elongated parallel to a sub-horizontal lineation, suggesting that mesoscale melt flow was focused primarily in the plane of the foliation along the lineation to developing dilatant transverse structures. The leucosome network connects with petrographic continuity to granite in dykes; however, the orientation of dykes discordant to fabric anisotropy suggests that their formation was controlled by stress, which indicates that the process is a fracture phenomenon. Blunt fracture tips and zigzag propagation paths indicate that the dykes represent ductile opening-mode fractures; these are postulated to have formed by coalescence of melt pockets. The structures record a transition from accumulation to draining; quantitative volume fluxes are calculated and presented for the generalised extraction process. The anatectic system may have converged to a critical state at some combination of melt fraction and melt distribution that enabled formation of ductile opening-mode fractures, but fractal distribution of inferred mesoscale melt-filled structures has not been demonstrated; this may reflect the inherent anisotropy and/or residual nature of the drained source. Melt extraction has been modelled as a self-organised critical phenomenon, but the mechanism of extraction is not described and the relationship between these models and the spatial and temporal granularity of lower continental crust is not addressed. Self-organised critical phenomena are driven systems involving ‘avalanches’ with a fractal frequency-size distribution; thus, the distribution of melt batch sizes might be expected to be fractal, but this has not yet been demonstrated in nature.
Volumetrically significant melt production requires crustal temperatures above approximately 800• C. At the grain scale, the former presence of melt may be inferred based on various microstructures, particularly pseudomorphs of melt pores and grainboundary melt films. In residual migmatites and granulites, evidence of melt-extraction pathways at outcrop scale is recorded by crystallized products of melt (leucosome) and residual material from which melt has drained (melanosome). These features form networks or arrays that potentially demonstrate the temporal and spatial relations between deformation and melting. As melt volume increases at sites of initial melting, the feedback between deformation and melting creates a dynamic rheological environment owing to localization and strain-rate weakening. With increasing temperature, melt volume increases to the melt connectivity transition, in the range of 2-7 vol% melt, at which point melt may escape in the first of several melt-loss events, where each event represents a batch of melt that left the source and ascended higher in the crust. Each contributing process has characteristic length and time scales, and it is the nonlinear interactions and feedback relations among them that give rise to the dissipative structures and episodicity of melt-extraction events that are recorded as variations in the spatial and temporal patterning of the crust. Focused melt flow occurs by dilatant shear failure of low-melt fraction rocks creating melt-flow networks that allow accumulation and storage of melt, and form the link for melt flow from grain boundaries to veins allowing drainage to crustal-scale ascent conduits. Preliminary indications suggest that anatectic systems are strongly self-organized from the bottom up, becoming more ordered by decreasing the number and increasing the width of ascent conduits from the anatectic zone through the overlying subsolidus crust to the ductile-to-brittle transition zone, where the melt accumulates in plutons.
Subduction is a component of plate tectonics, which is widely accepted as having operated in a manner similar to the present-day back through the Phanerozoic Eon. However, whether Earth always had plate tectonics or, if not, when and how a globally linked network of narrow plate boundaries emerged are matters of ongoing debate. Earth's mantle may have been as much as 200–300 °C warmer in the Mesoarchean compared to the present day, which potentially required an alternative tectonic regime during part or all of the Archean Eon. Here we use a data set of the pressure (P), temperature (T), and age of metamorphic rocks from 564 localities that vary in age from the Paleoarchean to the Cenozoic to evaluate the petrogenesis and secular change of metamorphic rocks associated with subduction and collisional orogenesis at convergent plate boundaries. Based on the thermobaric ratio (T/P), metamorphic rocks are classified into three natural groups: high T/P type (T/P > 775 °C/GPa, mean T/P ~1105 °C/GPa), intermediate T/P type (T/P between 775 and 375 °C/GPa, mean T/P ~575 °C/GPa), and low T/P type (T/P < 375 °C/GPa, mean T/P ~255 °C/GPa). With reference to published thermal models of active subduction, we show that low T/P oceanic metamorphic rocks preserving peak pressures >2.5 GPa equilibrated at P–T conditions similar to those modeled for the uppermost oceanic crust in a wide range of active subduction environments. By contrast, those that have peak pressures <2.2 GPa may require exhumation under relatively warm conditions, which may indicate subduction of young oceanic lithosphere or exhumation during the initial stages of subduction. However, low T/P oceanic metamorphic rocks with peak pressures of 2.5–2.2 GPa were exhumed from depths where, in models of active subduction, the slab and overriding plate change from being decoupled (at lower P) to coupled (at higher P), possibly suggesting a causal relationship. In relation to secular change, the widespread appearance of low T/P metamorphism in the Neoproterozoic represents a “modern” style of cold collision and deep slab breakoff, whereas rare occurrences of low T/P metamorphism in the Paleoproterozoic may reveal atypical localized regions of cold collision. Low T/P metamorphism is not known from the Archean geological record, but the absence of blueschists in particular is unlikely to reflect secular change in the composition of the oceanic crust. In addition, the premise that the formation of lawsonite requires abnormally low thermal gradients and the postulate that oceanic subduction-related rocks register significantly lower maximum pressures than do continental subduction-related rocks, and imply different mechanisms of exhumation, are not supported. The widespread appearance of intermediate T/P and high T/P metamorphism at the beginning of the Neoarchean, and the subsequent development of a clear bimodality in tectono-thermal environments are interpreted to be evidence of the stabilization of subduction during a transition to a globally linked network of narrow plate boundaries and the emergence of plate tectonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.