Cytoskeletal motors drive many essential cellular processes. For example, kinesin-1 transports cargo in a step-wise manner along microtubules. To resolve rotations during stepping, we used optical tweezers combined with an optical microprotractor and torsion balance using highly birefringent microspheres to directly and simultaneously measure the translocation, rotation, force, and torque generated by individual kinesin-1 motors. While, at low adenosine 5'-triphosphate (ATP) concentrations, motors did not generate torque, we found that motors translocating along microtubules at saturating ATP concentrations rotated unidirectionally, producing significant torque on the probes. Accounting for the rotational work makes kinesin a highly efficient machine. These results imply that the motor's gait follows a rotary hand-over-hand mechanism. Our method is generally applicable to study rotational and linear motion of molecular machines, and our findings have implications for kinesin-driven cellular processes.
Molecular motors translocate along cytoskeletal filaments, as in the case of kinesin motors on microtubules. Although conventional kinesin-1 tracks a single microtubule protofilament, other kinesins, akin to dyneins, switch protofilaments. However, the molecular trajectory-whether protofilament switching occurs in a directed or stochastic manner-is unclear. Here, we used high-resolution optical tweezers to track the path of single budding yeast kinesin-8, Kip3, motor proteins. Under applied sideward loads, we found that individual motors stepped sideward in both directions, with and against loads, with a broad distribution in measured step sizes. Interestingly, the force response depended on the direction. Based on a statistical analysis and simulations accounting for the geometry, we propose a diffusive sideward stepping motion of Kip3 on the microtubule lattice, asymmetrically biased by force. This finding is consistent with previous multimotor gliding assays and sheds light on the molecular switching mechanism. For kinesin-8, the diffusive switching mechanism may enable the motor to bypass obstacles and reach the microtubule end for length regulation. For other motors, such a mechanism may have implications for torque generation around the filament axis.
Kinesin motors are essential for the transport of cellular cargo along microtubules. How the motors step, detach, and cooperate with each other is still unclear. To dissect the molecular motion of kinesin-1, we developed germanium nanospheres as ultraresolution optical trapping probes. We found that single motors took 4-nanometer center-of-mass steps. Furthermore, kinesin-1 never detached from microtubules under hindering load conditions. Instead, it slipped on microtubules in microsecond-long, 8-nanometer steps and remained in this slip state before detaching or reengaging in directed motion. Unexpectedly, reengagement and thus rescue of directed motion was more frequent. Our observations broaden our knowledge on the mechanochemical cycle and slip state of kinesin. This state and rescue need to be accounted for to understand long-range transport by teams of motors.
Three-dimensional (3D) nanometer tracking of single biomolecules provides important information about their biological function. However, existing microscopy approaches often have only limited spatial or temporal precision and do not allow the application of defined loads. Here, we developed and applied a high-precision 3D-optical-tweezers force clamp to track in vitro the 3D motion of single kinesin-1 motor proteins along microtubules. To provide the motors with unimpeded access to the whole microtubule lattice, we mounted the microtubules on topographic surface features generated by UV-nanoimprint lithography. Because kinesin-1 motors processively move along individual protofilaments, we could determine the number of protofilaments the microtubules were composed of by measuring the helical pitches of motor movement on supertwisted microtubules. Moreover, we were able to identify defects in microtubules, most likely arising from local changes in the protofilament number. While it is hypothesized that microtubule supertwist and defects can severely influence the function of motors and other microtubule-associated proteins, the presented method allows for the first time to fully map the microtubule lattice in situ. This mapping allows the correlation of motor-filament interactions with the microtubule fine-structure. With the additional ability to apply loads, we expect our 3D-optical-tweezers force clamp to become a valuable tool for obtaining a wide range of information from other biological systems, inaccessible by two-dimensional and/or ensemble measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.