Despite decades of research, efforts to directly target KRAS have been challenging. MRTX849 was identifi ed as a potent, selective, and covalent KRAS G12C inhibitor that exhibits favorable drug-like properties, selectively modifi es mutant cysteine 12 in GDPbound KRAS G12C , and inhibits KRAS-dependent signaling. MRTX849 demonstrated pronounced tumor regression in 17 of 26 (65%) KRAS G12C -positive cell line-and patient-derived xenograft models from multiple tumor types, and objective responses have been observed in patients with KRAS G12C -positive lung and colon adenocarcinomas. Comprehensive pharmacodynamic and pharmacogenomic profi ling in sensitive and partially resistant nonclinical models identifi ed mechanisms implicated in limiting antitumor activity including KRAS nucleotide cycling and pathways that induce feedback reactivation and/or bypass KRAS dependence. These factors included activation of receptor tyrosine kinases (RTK), bypass of KRAS dependence, and genetic dysregulation of cell cycle. Combinations of MRTX849 with agents that target RTKs, mTOR, or cell cycle demonstrated enhanced response and marked tumor regression in several tumor models, including MRTX849-refractory models.
SIGNIFICANCE :The discovery of MRTX849 provides a long-awaited opportunity to selectively target KRAS G12C in patients. The in-depth characterization of MRTX849 activity, elucidation of response and resistance mechanisms, and identifi cation of effective combinations provide new insight toward KRAS dependence and the rational development of this class of agents.
Capping off an era marred by drug
development failures and punctuated by waning interest and presumed
intractability toward direct targeting of KRAS, new technologies and
strategies are aiding in the target’s resurgence. As previously
reported, the tetrahydropyridopyrimidines were identified as irreversible
covalent inhibitors of KRASG12C that bind in the switch-II
pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based
drug design in conjunction with a focused in vitro absorption, distribution,
metabolism and excretion screening approach, analogues were synthesized
to increase the potency and reduce metabolic liabilities of this series.
The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.
The extracellular signal-regulated kinases ERK1/2 represent an essential node within the RAS/RAF/MEK/ERK signaling cascade that is commonly activated by oncogenic mutations in BRAF or RAS or by upstream oncogenic signaling. While targeting upstream nodes with RAF and MEK inhibitors has proven effective clinically, resistance frequently develops through reactivation of the pathway. Simultaneous targeting of multiple nodes in the pathway, such as MEK and ERK, offers the prospect of enhanced efficacy as well as reduced potential for acquired resistance. Described herein is the discovery and characterization of GDC-0994 (22), an orally bioavailable small molecule inhibitor selective for ERK kinase activity.
A hallmark of Alzheimer's disease is the brain deposition of amyloid beta (Aβ), a peptide of 36-43 amino acids that is likely a primary driver of neurodegeneration. Aβ is produced by the sequential cleavage of APP by BACE1 and γ-secretase; therefore, inhibition of BACE1 represents an attractive therapeutic target to slow or prevent Alzheimer's disease. Herein we describe BACE1 inhibitors with limited molecular flexibility and molecular weight that decrease CSF Aβ in vivo, despite efflux. Starting with spirocycle 1a, we explore structure-activity relationships of core changes, P3 moieties, and Asp binding functional groups in order to optimize BACE1 affinity, cathepsin D selectivity, and blood-brain barrier (BBB) penetration. Using wild type guinea pig and rat, we demonstrate a PK/PD relationship between free drug concentrations in the brain and CSF Aβ lowering. Optimization of brain exposure led to the discovery of (R)-50 which reduced CSF Aβ in rodents and in monkey.
KRAS is the most frequently mutated driver oncogene in human cancer, and KRAS mutations are commonly associated with poor prognosis and resistance to standard treatment. The ability to effectively target and block the function of mutated KRAS has remained elusive despite decades of research. Recent findings have demonstrated that directly targeting KRAS-G12C with electrophilic small molecules that covalently modify the mutated codon 12 cysteine is feasible. We have discovered a series of tetrahydropyridopyrimidines as irreversible covalent inhibitors of KRAS-G12C with in vivo activity. The PK/PD and efficacy of compound 13 will be highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.