Polymer materials of reduced size and dimensionality, such as thin films, polymer nanofibres and nanotubes, exhibit exceptional mechanical properties compared with those of their macroscopic counterparts. We discuss here the abrupt increase in Young's modulus in polymer nanofibres. Using scaling estimation we show that this effect occurs when, in the amorphous (non-crystalline) part of the nanofibres, the transversal size of regions consisting of orientation-correlated macromolecules is comparable to the nanofibre diameter, thereby resulting in confinement of the supramolecular structure. We suggest that in polymer nanofibres the resulting supramolecular microstructure plays a more dominant role in the deformation process than previously thought, challenging the commonly held view that surface effects are most significant. The concept we develop also provides a way to interpret the observed--but not yet understood--temperature dependence of Young's modulus in nanofibres of different diameters.
Abstract-This paper presents a new approach to robot-assisted spine and trauma surgery in which a miniature robot is directly mounted on the patient's bony structure near the surgical site. The robot is designed to operate in a semiactive mode to precisely position and orient a drill or a needle in various surgical procedures. Since the robot forms a single rigid body with the anatomy, there is no need for immobilization or motion tracking, which greatly enhances and simplifies the robot's registration to the target anatomy. To demonstrate this concept, we developed the MiniAture Robot for Surgical procedures (MARS), a cylindrical 5 7 cm 3 , 200-g, six-degree-of-freedom parallel manipulator. We are currently developing two clinical applications to demonstrate the concept: 1) surgical tools guiding for spinal pedicle screws placement; and 2) drill guiding for distal locking screws in intramedullary nailing. In both cases, a tool guide attached to the robot is positioned at a planned location with a few intraoperative fluoroscopic X-ray images. Preliminary in-vitro experiments demonstrate the feasibility of this concept.
Nylon‐6,6 nanofibers were electrospun at an elongation rate of the order of 1000 s−1 and a cross‐sectional area reduction of the order of 0.33 × 105. The influence of these process peculiarities on the intrinsic structure and mechanical properties of the electrospun nanofibers is studied in the present work. Individual electrospun nanofibers with an average diameter of 550 nm were collected at take‐up velocities of 5 and 20 m/s and subsequently tested to assess their overall stress–strain characteristics; the testing included an evaluation of Young's modulus and the nanofibers' mechanical strength. The results for the as‐spun nanofibers were compared to the stress–strain characteristics of the melt‐extruded microfibers, which underwent postprocessing. For the nanofibers that were collected at 5 m/s the average elongation‐at‐break was 66%, the mechanical strength was 110 MPa, and Young's modulus was 453 MPa, for take‐up velocity of 20 m/s—61%, 150 and 950 MPa, respectively. The nanofibers displayed α‐crystalline phase (with triclinic cell structure). © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1482–1489, 2006
Fibers were electrospun from a solution comprised of oppositely charged polyelectrolytes, in efforts to achieve highly confined macromolecular packaging. A stoichiometric ratio of poly(allylamine hydrochloride) and poly(acrylic acid) solution was mixed in an ethanol-water co-solvent. Differential scanning calorimetry (DSC) analysis of electrospun fibers demonstrated no indication of glass transition, Tg. Infrared spectroscopy (FTIR) analysis of the fibers as a function of temperature, demonstrated an amidation process at lower temperature compared to cast film. Polarized FTIR indicated a preference of the functional groups to be perpendicular to the fiber axis. These results imply formation of mixed phase fibers with enhanced conditions for intermolecular interactions, due to the highly aligned and confined assembly of the macromolecules. The tunable intermolecular interactions between the functional groups of the polyelectrolytes, impact pH-driven, reversible swelling-deswelling of the fibers. The degree of ionization of PAA at pH 5.5 and pH 1.8 varied from 85% to 18%, correspondingly, causing transformation of ionic interactions to hydrogen bonding between the functional groups. The chemical change led to a massive water diffusion of 500% by weight and to a marked increase of 400% in fiber diameter, at a rate of 0.50 μm s(-1). These results allow for manipulation and tailoring of key fiber properties for tissue engineering, membranes, and artificial muscle applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.