Particle-laden flow in a vertical channel was simulated using a Reynolds-averaged Navier-Stokes two-fluid model including a Reynolds-stress model (RSM). Two sets of cases varying the overall mass loading were done using particle sizes corresponding to either a large or small Stokes number. Primary and turbulent statistics extracted from counterpart Eulerian-Lagrangian and Eulerian-Eulerian anisotropic-Gaussian simulations were used to inform parameters and closures applied in the RSM. While the behavior at the center of the channel compared well with the other simulations, including the transition from fully developed turbulent flow to relaminarization to cluster-induced turbulence as the mass loading increased, the behavior close to the wall deviated significantly. The primary contributor to this difference was the application of a uniform drag coefficient, which resulted in the RSM overpredicting the fluid-phase turbulent kinetic energy close to the wall. When considering small Stokes particles, the RSM at greater mass loadings reproduced the transient clustering observed in the other models. This was not observed using larger particles.
Particle‐laden flows in a vertical channel were simulated using an Eulerian–Eulerian, Anisotropic Gaussian (EE‐AG) model. Two sets of cases varying the overall mass loading were done using particle sizes corresponding to either a large or small Stokes number. Primary and turbulent statistics were extracted from these results and compared with counterparts collected from Eulerian–Lagrangian (EL) simulations. The statistics collected from the small Stokes number particle cases correspond well between the two models, with the EE‐AG model replicating the transition observed using the EL model from shear‐induced turbulence to relaminarization to cluster‐induced turbulence as the mass loading increased. The EE‐AG model was able to capture the behavior of the EL simulations only at the largest particle concentrations using the large Stokes particles. This is due to the limitations involved with employing a particle‐phase Eulerian model (as opposed to a Lagrangian representation) for a spatially intermittent system that has a low particle number concentration.
Particle-laden flows in a vertical channel were simulated using an Eulerian-Eulerian, Anisotropic-Gaussian (EE-AG) model. Two sets of cases varying the overall mass loading were done using particle sizes corresponding to either a large or small Stokes number. Primary and turbulent statistics were extracted from these results and compared with counterparts collected from Eulerian-Lagrangian (EL) simulations. The statistics collected from the small Stokes number particle cases correspond well between the two models, with the EE-AG model replicating the transition observed using the EL model from shear-induced turbulence to relaminarization to cluster-induced turbulence as the mass loading increased. The EE-AG model was able to capture the behavior of the EL simulations only at the largest particle concentrations using the large Stokes particles. This is due to the limitations involved with employing a particle-phase Eulerian model (as opposed to a Lagrangian representation) for a spatially intermittent system that has a low particle number concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.