Current conductive materials for use in cardiac regeneration are limited by cytotoxicity or cost in implementation. In this manuscript, we demonstrate for the first time the application of a biocompatible, conductive polypyrrole-polycaprolactone film as a platform for culturing cardiomyocytes for cardiac regeneration. This study shows that the novel conductive film is capable of enhancing cell-cell communication through the formation of connexin-43, leading to higher velocities for calcium wave propagation and reduced calcium transient durations among cultured cardiomyocyte monolayers. Furthermore, it was demonstrated that chemical modification of polycaprolactone through alkaline-mediated hydrolysis increased overall cardiomyocyte adhesion. The results of this study provide insight into how cardiomyocytes interact with conductive substrates and will inform future research efforts to enhance the functional properties of cardiomyocytes, which is critical for their use in pharmaceutical testing and cell therapy.
Superconducting circuits that operate by propagation of small voltage or current pulses, corresponding to propagation of single flux or charge quantum, are naturally suited for implementing spiking neuron circuits. Quantum phase-slip junctions (QPSJs) are 1-D superconducting nanowires that have been identified as exact duals to Josephson junctions, based on charge-flux duality in Maxwell’s equations. In this paper, a superconducting quantized-charge circuit element, formed using quantum phase-slip junctions, is investigated for use in high-speed, low-energy superconducting spiking neuron circuits. By means of a SPICE model developed for QPSJs, operation of this superconducting circuit to produce and transport quantized charge pulses, in the form of current pulses, is demonstrated. The resulting quantized-charge-based operation emulates spiking neuron circuits for brain-inspired neuromorphic applications. Additionally, to further demonstrate the operation of QPSJ-based neuron circuits, a QPSJ-based integrate and fire neuron circuit is introduced, along with simulation results using WRSPICE. Estimates for operating speed and power dissipation are provided and compared to Josephson junction and CMOS-based spiking neuron circuits. Current challenges are also briefly mentioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.