Genomic integrity is critical for an organism's survival and ability to reproduce. In Escherichia coli, the UvrD helicase has roles in nucleotide excision repair and methyl-directed mismatch repair and can limit reactions by RecA under certain circumstances. UvrD303 (D403A D404A) is a hyperhelicase mutant, and when expressed from a multicopy plasmid, it results in UV sensitivity (UV s ), recombination deficiency, and antimutability. In order to understand the molecular mechanism underlying the UV s phenotype of uvrD303 cells, this mutation was transferred to the E. coli chromosome and studied in single copy. It is shown here that uvrD303 mutants are UV sensitive, recombination deficient, and antimutable and additionally have a moderate defect in inducing the SOS response after UV treatment. The UV-sensitive phenotype is epistatic with recA and additive with uvrA and is partially suppressed by removing the LexA repressor. Furthermore, uvrD303 is able to inhibit constitutive SOS expression caused by the recA730 mutation. The ability of UvrD303 to antagonize SOS expression was dependent on its 40 C-terminal amino acids. It is proposed that UvrD303, via its C terminus, can decrease the levels of RecA activity in the cell.
In Escherichia coli, RecA-single-stranded DNA (RecA-ssDNA) filaments catalyze DNA repair, recombination, and induction of the SOS response. It has been shown that, while many (15 to 25%) log-phase cells have RecA filaments, few (about 1%) are induced for SOS. It is hypothesized that RecA's ability to induce SOS expression in log-phase cells is repressed because of the potentially detrimental effects of SOS mutagenesis. To test this, mutations were sought to produce a population where the number of cells with SOS expression more closely equaled the number of RecA filaments. Here, it is shown that deleting radA (important for resolution of recombination structures) and increasing recA transcription 2-to 3-fold with a recAo1403 operator mutation act independently to minimally satisfy this condition. This allows 24% of mutant cells to have elevated levels of SOS expression, a percentage similar to that of cells with RecA-green fluorescent protein (RecA-GFP) foci. In an xthA (exonuclease III gene) mutant where there are 3-fold more RecA loading events, recX (a destabilizer of RecA filaments) must be additionally deleted to achieve a population of cells where the percentage having elevated SOS expression (91%) nearly equals the percentage with at least one RecA-GFP focus (83%). It is proposed that, in the xthA mutant, there are three independent mechanisms that repress SOS expression in log-phase cells. These are the rapid processing of RecA filaments by RadA, maintaining the concentration of RecA below a critical level, and the destabilizing of RecA filaments by RecX. Only the first two mechanisms operate independently in a wild-type cell.
Treatment of log phase cultures of Escherichia coli with cell wall active antibiotics results in increased exposure of immunologically reactive lipid A epitopes of lipopolysaccharide (LPS) and release of soluble LPS into culture supernatants. Comparison of the efficacy of two cell wall active antibiotics, ceftazidime, a penicillin-binding protein 3 selective antibiotic, and imipenem, a penicillin-binding protein 2 selective antibiotic, for their relative efficacy in mediating LPS release indicated quantitative but not qualitative differences, with the former antibiotic manifesting a significantly broader range of concentrations at which LPS release could be demonstrated. Comparison of the relative efficacy of these two antibiotics in a mouse bacteraemia model in which animals were made hypersensitive to the lethal effects of endotoxin by treatment with D-galactosamine indicated that the latter antibiotic may provide a greater level of protection. These studies suggest that the release of endotoxin mediated by antibiotic treatment may contribute to the pathogenesis of disease in infectious due to gram-negative organisms.
Lipopolysaccharide (LPS), purified from gram-negative bacteria, is well known to induce proinflammatory responses in monocytes and macrophages, and release of LPS from the microbial surface has been suggested to be an important initiating event in the sepsis syndrome. However, numerous studies have documented that a variety of constituents present in the outer cell membrane of gram-negative bacteria have the capacity to activate cells of the immune system. Given that the majority of immunotherapeutic approaches designed to intervene in gram-negative sepsis have to date targeted the LPS molecule, it would be of value to assess the relative proinflammatory properties of LPS and other gram-negative structures. Experiments were therefore undertaken to assess stimulation of human monocytes by components released from Escherichia coil following bacteriolysis by the cell wall-active antibiotic ceftazidime. As assessed by both induction of procoagulant activity and release of tumor necrosis factor, bacterial culture supernatants contain significant proinflammatory activity. When culture supernatants are fractionated via either velocity sedimentation in sucrose gradients or isopycnic density gradient ultracentrifugation in cesium chloride, the predominant monocyte-stimulating activity is identified in LPS-containing fractions. Further, such activity can be readily abrogated by the addition of polymyxin B. These results provide support for the hypothesis that LPS may be responsible for the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.